

Announcements

Monday, September 10

- ▶ WeBWorK due on Wednesday at 11:59pm.
- ▶ The quiz on Friday covers §3.1 and §3.2.
- ▶ The first midterm is on **Friday, September 21**.
 - ▶ That is one week from this Friday.
 - ▶ Midterms happen during recitation.
 - ▶ The exam covers *through* §3.4.
- ▶ My office is Skiles 244 and Rabin office hours are: Mondays, 12–1pm; Wednesdays, 1–3pm.

Section 3.3

Matrix Equations

Matrix \times Vector

the first number is
the number of rows

the second number is
the number of columns

Let A be an $m \times n$ matrix

$$A = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & & | \end{pmatrix} \quad \text{with columns } v_1, v_2, \dots, v_n$$

Definition

The **product** of A with a vector x in \mathbb{R}^n is the linear combination

$$Ax = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & & | \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \stackrel{\text{def}}{=} x_1 v_1 + x_2 v_2 + \cdots + x_n v_n.$$

these must be equal

this means the equality
is a *definition*

The output is a vector in \mathbb{R}^m .

Note that the number of **columns** of A has to equal the number of **rows** of x .

Example

$$\begin{pmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} =$$

Matrix Equations

An example

Question

Let v_1, v_2, v_3 be vectors in \mathbf{R}^3 . How can you write the vector equation

$$2v_1 + 3v_2 - 4v_3 = \begin{pmatrix} 7 \\ 2 \\ 1 \end{pmatrix}$$

in terms of matrix multiplication?

Matrix Equations

In general

Let v_1, v_2, \dots, v_n , and b be vectors in \mathbb{R}^m . Consider the vector equation

$$x_1 v_1 + x_2 v_2 + \cdots + x_n v_n = b.$$

It is equivalent to the **matrix equation**

$$Ax = b$$

where

$$A = \begin{pmatrix} | & | & \cdots & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & \cdots & | \end{pmatrix} \quad \text{and} \quad x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Conversely, if A is any $m \times n$ matrix, then

$$Ax = b \quad \begin{matrix} \text{is equivalent to the} \\ \text{vector equation} \end{matrix} \quad x_1 v_1 + x_2 v_2 + \cdots + x_n v_n = b$$

where v_1, \dots, v_n are the columns of A , and x_1, \dots, x_n are the entries of x .

Linear Systems, Vector Equations, Matrix Equations, ...

We now have *four* equivalent ways of writing (and thinking about) linear systems:

1. As a system of equations:

$$\begin{aligned}2x_1 + 3x_2 &= 7 \\x_1 - x_2 &= 5\end{aligned}$$

2. As an augmented matrix:

$$\left(\begin{array}{cc|c} 2 & 3 & 7 \\ 1 & -1 & 5 \end{array} \right)$$

3. As a vector equation ($x_1 v_1 + \cdots + x_n v_n = b$):

$$x_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + x_2 \begin{pmatrix} 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$$

4. As a matrix equation ($Ax = b$):

$$\begin{pmatrix} 2 & 3 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$$

We will move back and forth freely between these over and over again, for the rest of the semester. Get comfortable with them now!

In particular, *all four have the same solution set*.

Matrix \times Vector

Another way

Definition

A **row vector** is a matrix with one row. The product of a row vector of length n and a (column) vector of length n is

$$(a_1 \quad \cdots \quad a_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \stackrel{\text{def}}{=} a_1 x_1 + \cdots + a_n x_n.$$

This is a scalar.

If A is an $m \times n$ matrix with rows r_1, r_2, \dots, r_m , and x is a vector in \mathbf{R}^n , then

$$Ax = \begin{pmatrix} -r_1- \\ -r_2- \\ \vdots \\ -r_m- \end{pmatrix} x = \begin{pmatrix} r_1 x \\ r_2 x \\ \vdots \\ r_m x \end{pmatrix}$$

This is a vector in \mathbf{R}^m (again).

Matrix \times Vector

Both ways

Example

$$\begin{pmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} =$$

Note this is the same as before:

Now you have *two* ways of computing Ax .

In the second, you calculate Ax one entry at a time.

The second way is usually the most convenient, but we'll use both.

In engineering, the first way corresponds to “superposition of states”, and the second is “taking a measurement”.

Spans and Solutions to Equations

Let A be a matrix with columns v_1, v_2, \dots, v_n :

$$A = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & & | \end{pmatrix}$$

Very Important Fact That Will Appear on Every Midterm and the Final

$Ax = b$ has a solution

$$\iff \text{there exist } x_1, \dots, x_n \text{ such that } A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = b$$

"if and only if"

$$\begin{aligned} &\iff \text{there exist } x_1, \dots, x_n \text{ such that } x_1 v_1 + \cdots + x_n v_n = b \\ &\iff b \text{ is a linear combination of } v_1, \dots, v_n \\ &\iff b \text{ is in the span of the columns of } A. \end{aligned}$$

The last condition is geometric.

Spans and Solutions to Equations

Example

Question

Let $A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \\ 1 & -1 \end{pmatrix}$. Does the equation $Ax = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}$ have a solution?

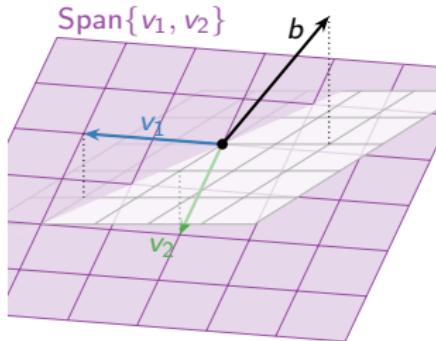
[interactive]

Columns of A :

$$v_1 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \quad v_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

Target vector:

$$b = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}$$



Is b contained in the span of the columns of A ? It sure doesn't look like it.

Conclusion: $Ax = b$ is *inconsistent*.

Spans and Solutions to Equations

Example, continued

Question

Let $A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \\ 1 & -1 \end{pmatrix}$. Does the equation $Ax = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}$ have a solution?

Answer: Let's check by solving the matrix equation using row reduction.

In other words, the matrix equation

$$\begin{pmatrix} 2 & 1 \\ -1 & 0 \\ 1 & -1 \end{pmatrix} x = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}$$

has no solution, as the picture shows.

Spans and Solutions to Equations

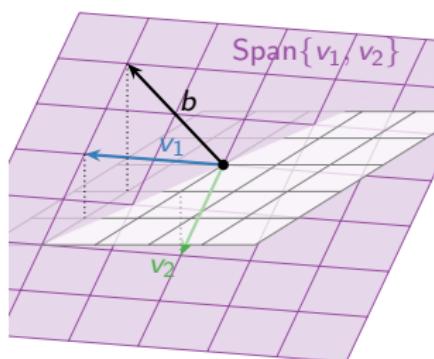
Example

Question

Let $A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \\ 1 & -1 \end{pmatrix}$. Does the equation $Ax = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ have a solution?

[interactive]

Columns of A :



$$v_1 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \quad v_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

Target vector:

$$b = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

Is b contained in the span of the columns of A ? It looks like it: in fact,

$$b = 1v_1 + (-1)v_2 \implies x = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Spans and Solutions to Equations

Example, continued

Question

Let $A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \\ 1 & -1 \end{pmatrix}$. Does the equation $Ax = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ have a solution?

Answer: Let's do this systematically using row reduction.

This is consistent with the picture on the previous slide:

$$1 \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} - 1 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \quad \text{or} \quad A \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}.$$

Poll

When Solutions Always Exist

Here are criteria for a linear system to *always* have a solution.

Theorem

Let A be an $m \times n$ (non-augmented) matrix. The following are equivalent:

1. $Ax = b$ has a solution *for all* b in \mathbf{R}^m .
2. The span of the columns of A is all of \mathbf{R}^m .
3. A has a pivot in each row.

↑
recall that this means
that for given A , either they're
all true, or they're all false

Why is (1) the same as (2)? This was the **Very Important** box from before.

Why is (1) the same as (3)? If A has a pivot in each row then its reduced row echelon form looks like this:

$$\left(\begin{array}{ccccc} 1 & 0 & * & 0 & * \\ 0 & 1 & * & 0 & * \\ 0 & 0 & 0 & 1 & * \end{array} \right) \quad \text{and } (A | b) \text{ reduces to this:} \quad \left(\begin{array}{ccccc|c} 1 & 0 & * & 0 & * & * \\ 0 & 1 & * & 0 & * & * \\ 0 & 0 & 0 & 1 & * & * \end{array} \right).$$

There's no b that makes it inconsistent, so there's always a solution. If A doesn't have a pivot in each row, then its reduced form looks like this:

$$\left(\begin{array}{ccccc} 1 & 0 & * & 0 & * \\ 0 & 1 & * & 0 & * \\ 0 & 0 & 0 & 0 & 0 \end{array} \right) \quad \text{and this can be made inconsistent:} \quad \left(\begin{array}{ccccc|c} 1 & 0 & * & 0 & * & 0 \\ 0 & 1 & * & 0 & * & 0 \\ 0 & 0 & 0 & 0 & 0 & 16 \end{array} \right).$$

When Solutions Always Exist

Continued

Theorem

Let A be an $m \times n$ (non-augmented) matrix. The following are equivalent:

1. $Ax = b$ has a solution *for all* b in \mathbf{R}^m .
2. The span of the columns of A is all of \mathbf{R}^m .
3. A has a pivot in each row.

In the following demos, the **violet** region is the span of the columns of A . This is the same as the set of all b such that $Ax = b$ has a solution.

[example where the criteria are satisfied]

[example where the criteria are not satisfied]

Properties of the Matrix–Vector Product

Let c be a scalar, u, v be vectors, and A a matrix.

- ▶ $A(u + v) = Au + Av$
- ▶ $A(cv) = cAv$

Consequence: If u and v are solutions to $Ax = 0$, then so is every vector in $\text{Span}\{u, v\}$. Why?

Important

The set of solutions to $Ax = 0$ is a span.

Summary

- ▶ We have four equivalent ways of writing a system of linear equations:
 1. As a system of equations.
 2. As an augmented matrix.
 3. As a vector equation.
 4. As a matrix equation $Ax = b$.
- ▶ $Ax = b$ is consistent if and only if b is in the span of the columns of A . The latter condition is geometric: you can draw pictures of it.
- ▶ $Ax = b$ is consistent for all b in \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m .