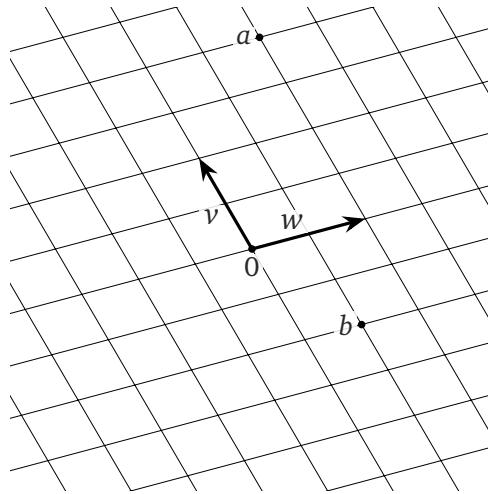


MATH 1553
QUIZ #3: §§3.1, 3.2

Name		Section
------	--	---------

1. [1 point each] Consider the following picture of two vectors v, w :



For each of the labeled points, estimate the coefficients x, y such that the linear combination $xv + yw$ is the vector ending at that point. (Use the parallelogram law for vector addition; you needn't show your work.)

$$\underline{\quad} v + \underline{\quad} w = a$$

$$\underline{\quad} v + \underline{\quad} w = b$$

2. [3 points] Consider the following vectors:

$$u = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} \quad v = \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} \quad w = \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix}.$$

Decide if w is in $\text{Span}\{u, v\}$ by solving a system of equations.

3. [1 point each] For each of the following sets of vectors, circle the word that describes the span.

$$\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$$

point
line
plane
space

$$\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$

point
line
plane
space

$$\left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

point
line
plane
space

$$\left\{ \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} \right\}$$

point
line
plane
space

$$\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} \right\}$$

point
line
plane
space