

Announcements

Wednesday, September 19

- ▶ WeBWorK 3.3, 3.4 are due today at 11:59pm.
- ▶ The first midterm is on this **Friday, September 21**.
 - ▶ Midterms happen during recitation.
 - ▶ The exam covers *through* §3.4.
 - ▶ About half the problems will be conceptual, and the other half computational.
- ▶ There is a practice midterm posted on the website. It is meant to be similar in format and difficulty to the real midterm. Solutions are posted.
- ▶ Study tips:
 - ▶ Drill problems in Lay. Practice the recipes until you can do them in your sleep.
 - ▶ Make sure to **learn the theorems** and **learn the definitions**, and understand what they mean. There is a reference sheet on the website. Make flashcards!
 - ▶ Sit down to do the practice midterm in 50 minutes, with no notes.
 - ▶ Come to office hours!
- ▶ **Double Rabin office hours** this week: Monday 12–1; Tuesday 10–11; Wednesday 1–3; Thursday 2–4
- ▶ TA review session: Weber SST III classroom 1, 4:30–6pm on Thursday.

Section 3.6

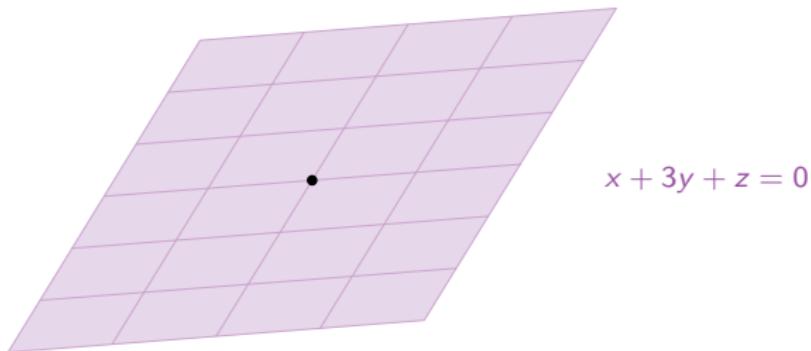
Subspaces

Motivation

Today we will discuss **subspaces** of \mathbf{R}^n .

A subspace turns out to be the same as a span, except we don't know *which* vectors it's the span of.

This arises naturally when you have, say, a plane through the origin in \mathbf{R}^3 which is *not* defined (a priori) as a span, but you still want to say something about it.



Definition of Subspace

Definition

A **subspace** of \mathbf{R}^n is a subset V of \mathbf{R}^n satisfying:

1. The zero vector is in V . "not empty"
2. If u and v are in V , then $u + v$ is also in V . "closed under addition"
3. If u is in V and c is in \mathbf{R} , then cu is in V . "closed under \times scalars"

Fast-forward

Every subspace is a span, and every span is a subspace.

A subspace is a span of some vectors, but you haven't computed what those vectors are yet.

Definition of Subspace

Definition

A **subspace** of \mathbf{R}^n is a subset V of \mathbf{R}^n satisfying:

1. The zero vector is in V . "not empty"
2. If u and v are in V , then $u + v$ is also in V . "closed under addition"
3. If u is in V and c is in \mathbf{R} , then cu is in V . "closed under \times scalars"

What does this mean?

- If v is in V , then all scalar multiples of v are in V by (3). That is, the line through v is in V .
- If u, v are in V , then xu and yv are in V for scalars x, y by (3). So $xu + yv$ is in V by (2). So $\text{Span}\{u, v\}$ is contained in V .
- Likewise, if v_1, v_2, \dots, v_n are all in V , then $\text{Span}\{v_1, v_2, \dots, v_n\}$ is contained in V : a subspace contains the span of any set of vectors in it.

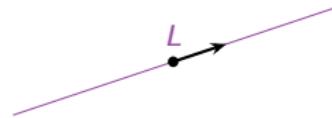
If you pick enough vectors in V , eventually their span will fill up V , so:

A subspace is a span of some set of vectors in it.

Examples

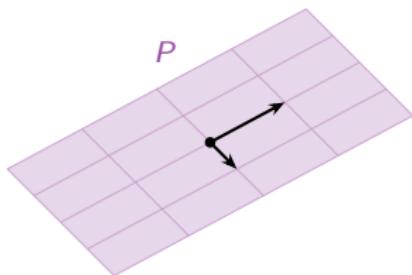
Example

A line L through the origin: this contains the span of any vector in L .



Example

A plane P through the origin: this contains the span of any vectors in P .



Example

All of \mathbf{R}^n : this contains 0, and is closed under addition and scalar multiplication.

Example

The subset $\{0\}$: this subspace contains only one vector.

Note these are all pictures of spans! (Line, plane, space, etc.)

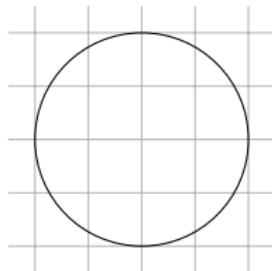
Subsets and Subspaces

They aren't the same thing

A **subset** of \mathbf{R}^n is any collection of vectors whatsoever.

All of the following non-examples are still subsets.

A **subspace** is a special kind of subset, which satisfies the three defining properties.



Subset: yes

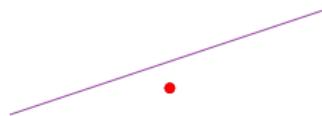
Subspace: no

Non-Examples

Non-Example

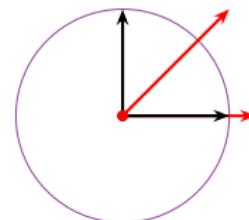
A line L (or any other set) that doesn't contain the origin is not a subspace.

Fails: 1.



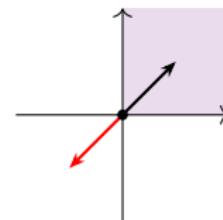
Non-Example

A circle C is not a subspace. Fails: 1,2,3. Think: a circle isn't a "linear space."



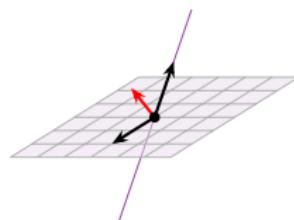
Non-Example

The first quadrant in \mathbb{R}^2 is not a subspace. Fails: 3 only.



Non-Example

A line union a plane in \mathbb{R}^3 is not a subspace. Fails: 2 only.



Spans are Subspaces

Theorem

Any $\text{Span}\{v_1, v_2, \dots, v_n\}$ is a subspace.

!!!

Every subspace is a span, and every span is a subspace.

Definition

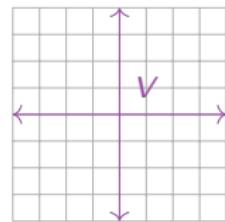
If $V = \text{Span}\{v_1, v_2, \dots, v_n\}$, we say that V is the subspace **generated by** or **spanned by** the vectors v_1, v_2, \dots, v_n .

Poll

Subspaces

Verification

Let $V = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \text{ in } \mathbb{R}^2 \mid ab = 0 \right\}$. Let's check if V is a subspace or not.



We conclude that V is *not* a subspace. A picture is above. (It doesn't look like a span.)

Column Space and Null Space

An $m \times n$ matrix A naturally gives rise to two subspaces.

Definition

- ▶ The **column space** of A is the subspace of \mathbf{R}^m spanned by the columns of A . It is written $\text{Col } A$.
- ▶ The **null space** of A is the set of all solutions of the homogeneous equation $Ax = 0$:

$$\text{Nul } A = \{x \text{ in } \mathbf{R}^n \mid Ax = 0\}.$$

This is a subspace of \mathbf{R}^n .

The column space is defined as a span, so we know it is a subspace.

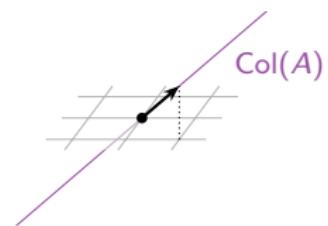
Check that the null space is a subspace:

Column Space and Null Space

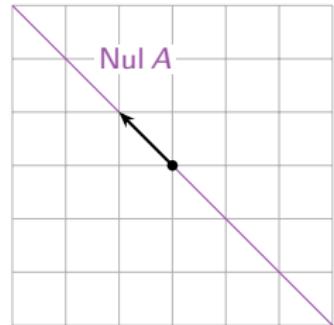
Example

$$\text{Let } A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

Let's compute the column space:



Let's compute the null space:



The Null Space is a Span

The column space of a matrix A is defined to be a span (of the columns).

The null space is defined to be the solution set to $Ax = 0$. It is a subspace, so it is a span.

Question

How to find vectors which span the null space?

Answer: Parametric vector form! We know that the solution set to $Ax = 0$ has a parametric form that looks like

$$x_3 \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -2 \\ 3 \\ 0 \\ 1 \end{pmatrix} \quad \text{if, say, } x_3 \text{ and } x_4 \text{ are the free variables. So}$$

$$\text{Nul } A = \text{Span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 3 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Refer back to the slides for §3.4 (Solution Sets).

Note: It is much easier to define the null space first as a subspace, then find spanning vectors *later*, if we need them. This is one reason subspaces are so useful.

Subspaces

Summary

- ▶ A **subspace** is the same as a span of some number of vectors, but we haven't computed the vectors yet.
- ▶ To any matrix is associated two subspaces, the **column space** and the **null space**:

$\text{Col } A =$ the span of the columns of A

$\text{Nul } A =$ the solution set of $Ax = 0$.

How do you check if a subset is a subspace?

- ▶ Is it a span? Can it be written as a span?
- ▶ Can it be written as the column space of a matrix?
- ▶ Can it be written as the null space of a matrix?
- ▶ Is it all of \mathbb{R}^n or the zero subspace $\{0\}$?
- ▶ Can it be written as a type of subspace that we'll learn about later (eigenspaces, ...)?

If so, then it's automatically a subspace.

If all else fails:

- ▶ Can you verify directly that it satisfies the three defining properties?