

MATH 1553
QUIZ #4: §§3.7, 3.9, 4.1

Name		Section	
------	--	---------	--

1. Consider the matrix

$$A = \begin{pmatrix} -6 & -18 & 1 & 8 \\ -5 & -15 & -2 & 1 \\ -1 & -3 & -1 & -1 \end{pmatrix}$$

and the matrix transformation $T(x) = Ax$.

- a) [1 point] What is the domain of T ?
- b) [1 point] What is the codomain of T ?
- c) [3 points] Find a basis for the range of T .
- d) [2 points] What is the nullity of A ?

Solution.

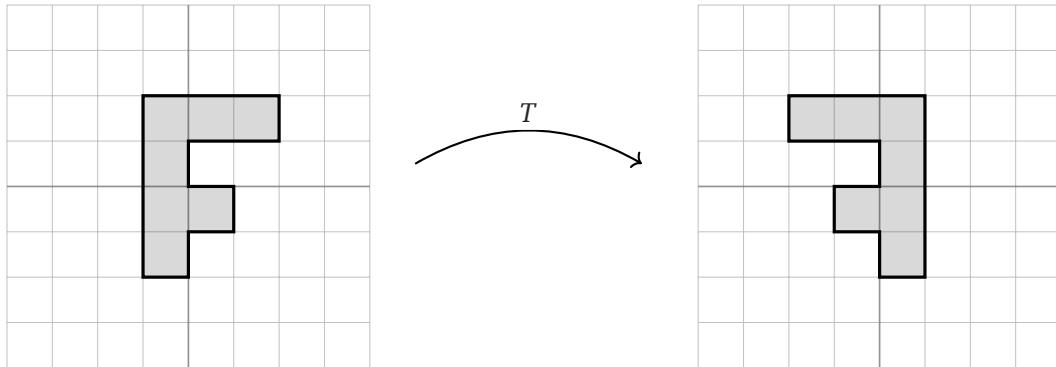
- a) \mathbf{R}^4
- b) \mathbf{R}^3
- c) The range of T is $\text{Col } A$. To compute a basis for this, we reduce to row echelon form:

$$\begin{pmatrix} -6 & -18 & 1 & 8 \\ -5 & -15 & -2 & 1 \\ -1 & -3 & -1 & -1 \end{pmatrix} \xrightarrow{\text{REF}} \begin{pmatrix} 1 & 3 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

The first and third columns have pivots, so a basis for $\text{Col } A$ is

$$\left\{ \begin{pmatrix} -6 \\ -5 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} \right\}.$$

- d) We just computed $\text{rank } A = 2$. By the Rank Theorem,


$$\# \text{columns} = 4 = \text{rank } A + \text{nullity } A = 2 + \text{nullity } A,$$

so $\text{nullity } A = 2$.

2. [3 points] Consider the matrix transformation $T: \mathbf{R}^2 \rightarrow \mathbf{R}^2$ defined by

$$T(x) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} x.$$

Draw the image of the F under this transformation.

