

Math 1553 Worksheet §4.4, Matrix Operations

Solutions

1. If A is a 3×5 matrix and B is a 3×2 matrix, which of the following are defined? Very briefly justify your answer.

- a) $A - B$
- b) AB
- c) $A^T B$
- d) $B^T A$
- e) A^2

Solution.

Only (c) and (d).

- a) $A - B$ is nonsense. In order for $A - B$ to be defined, A and B need to have the same number of rows and same number of columns as each other.
- b) AB is undefined since the number of columns of A does not equal the number of rows of B .
- c) A^T is 5×3 and B is 3×2 , so $A^T B$ is a 5×2 matrix.
- d) B^T is 2×3 and A is 3×5 , so $B^T A$ is a 2×5 matrix.
- e) A^2 is nonsense (can't do 3×5 times 3×5).

2. True or false (justify your answer). Answer true if the statement is *always* true. Otherwise, answer false.

- a) If A is an $m \times n$ matrix and B is an $n \times p$ matrix, then each column of AB is a linear combination of the columns of A .
- b) If A is a 3×4 matrix and B is a 4×2 matrix, then the linear transformation Z defined by $Z(x) = ABx$ has domain \mathbf{R}^2 and codomain \mathbf{R}^3 .
- c) Suppose $T : \mathbf{R}^n \rightarrow \mathbf{R}^m$ and $U : \mathbf{R}^m \rightarrow \mathbf{R}^p$ are linear transformations and $U \circ T$ is onto. Then U and T must both be onto.

Solution.

- a) True. If we let v_1, \dots, v_p be the columns of B , then $AB = (Av_1 \ Av_2 \ \cdots \ Av_p)$, where Av_i is in the column span of A for every i (this is part of the definition of matrix multiplication of vectors).
- b) True. In order for Bx to make sense, x must be in \mathbf{R}^2 , and so Bx is in \mathbf{R}^4 and $A(Bx)$ is in \mathbf{R}^3 . Therefore, the domain of Z is \mathbf{R}^2 and the codomain of Z is \mathbf{R}^3 .
- c) False. Take the linear transformations $T : \mathbf{R}^3 \rightarrow \mathbf{R}^3$ and $U : \mathbf{R}^3 \rightarrow \mathbf{R}^2$ given by $T(x, y, z) = (x, y, 0)$ and $U(x, y, z) = (x, y)$. Then $(U \circ T)(x, y, z) = (x, y)$, so

$U \circ T$ maps \mathbf{R}^3 onto \mathbf{R}^2 . However, T is not onto since the z -coordinate of every vector in its image is 0.

3. Let $T : \mathbf{R}^2 \rightarrow \mathbf{R}^2$ be rotation *clockwise* by 60° . Let $U : \mathbf{R}^2 \rightarrow \mathbf{R}^2$ be the linear transformation with standard matrix $\begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix}$.

- Find the standard matrix K for the composition $U \circ T$.
- Find the standard matrix L for the composition $T \circ U$.
- Is rotating clockwise by 60° and then performing U , the same as first performing U and then rotating clockwise by 60° ?

Solution.

a) The matrix for T is $\begin{pmatrix} \cos(-60^\circ) & -\sin(-60^\circ) \\ \sin(-60^\circ) & \cos(-60^\circ) \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$. The matrix for $U \circ T$ is

$$K = \begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} -1 - \frac{\sqrt{3}}{2} & \frac{1}{2} - \sqrt{3} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}.$$

b) The matrix for $T \circ U$ is

$$L = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 + \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} + \sqrt{3} & -\frac{\sqrt{3}}{2} \end{pmatrix}.$$

c) No, since $K \neq L$.