

Math 1553 Worksheet §4.4, Matrix Operations

1. If A is a 3×5 matrix and B is a 3×2 matrix, which of the following are defined? Very briefly justify your answer.

- a) $A - B$
- b) AB
- c) $A^T B$
- d) $B^T A$
- e) A^2

2. True or false (justify your answer). Answer true if the statement is *always* true. Otherwise, answer false.

- a) If A is an $m \times n$ matrix and B is an $n \times p$ matrix, then each column of AB is a linear combination of the columns of A .
- b) If A is a 3×4 matrix and B is a 4×2 matrix, then the linear transformation transformation Z defined by $Z(x) = ABx$ has domain \mathbf{R}^2 and codomain \mathbf{R}^3 .
- c) Suppose $T : \mathbf{R}^n \rightarrow \mathbf{R}^m$ and $U : \mathbf{R}^m \rightarrow \mathbf{R}^p$ are linear transformations and $U \circ T$ is onto. Then U and T must both be onto.

3. Let $T : \mathbf{R}^2 \rightarrow \mathbf{R}^2$ be rotation *clockwise* by 60° . Let $U : \mathbf{R}^2 \rightarrow \mathbf{R}^2$ be the linear transformation with standard matrix $\begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix}$.

a) Find the standard matrix K for the composition $U \circ T$.

b) Find the standard matrix L for the composition $T \circ U$.

c) Is rotating clockwise by 60° and then performing U , the same as first performing U and then rotating clockwise by 60° ?