

MATH 1553
QUIZ #6: §§5.1–5.3

Name		Section	
------	--	---------	--

- 1.** [2 points each] In this problem we consider these matrices:

$$A = \begin{pmatrix} 2 & 5 & -3 \\ -2 & -5 & 0 \\ -5 & -4 & 4 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 5 & 0 & -3 \\ -2 & 2 & 1 & -1 \\ -2 & -5 & 0 & 0 \\ -3 & -6 & -1 & 5 \end{pmatrix} \quad C = \begin{pmatrix} 4 & 0 & 0 & 0 \\ -5 & -1 & 0 & 0 \\ 5 & -5 & -2 & 0 \\ 1 & 3 & 1 & -1 \end{pmatrix} \quad D = \begin{pmatrix} -3 & -2 & 3 & -1 \\ 1 & -4 & -1 & -3 \\ -4 & -5 & 4 & 3 \\ -1 & 4 & 1 & -5 \end{pmatrix}$$

Compute the following determinants (none require extensive calculations):

- a)** $\det(A) =$
- b)** $\det(B) =$
- c)** $\det(C) =$
- d)** $\det(D) =$
- e)** $\det(BC^2B^{-1}) =$

Solution.

- a)** Expanding cofactors along the third column gives

$$\det(A) = -3 \det \begin{pmatrix} -2 & -5 \\ -5 & -4 \end{pmatrix} + 4 \det \begin{pmatrix} 2 & 5 \\ -2 & -5 \end{pmatrix} = -3(8 - 25) + 4(0) = 51.$$

- b)** First we perform a row replacement, which does not change the determinant:

$$\begin{pmatrix} 2 & 5 & 0 & -3 \\ -2 & 2 & 1 & -1 \\ -2 & -5 & 0 & 0 \\ -3 & -6 & -1 & 5 \end{pmatrix} \xrightarrow{R_4=R_4+R_2} \begin{pmatrix} 2 & 5 & 0 & -3 \\ -2 & 2 & 1 & -1 \\ -2 & -5 & 0 & 0 \\ -5 & -4 & 0 & 4 \end{pmatrix}$$

Expanding cofactors along the third column of this matrix gives

$$\det(B) = -\det \begin{pmatrix} 2 & 5 & -3 \\ -2 & -5 & 0 \\ -5 & -4 & 4 \end{pmatrix} = -\det(A) = -51.$$

- c)** This is a triangular matrix, so its determinant is the product of the diagonal entries:

$$\det(C) = (4)(-1)(-2)(-1) = -8.$$

- d)** The third column of D is a multiple of the first, so D is not invertible, and hence $\det(D) = 0$.

e) We use multiplicativity of the determinant and the fact that $\det(B^{-1}) = \det(B)^{-1}$:

$$\det(BC^2B^{-1}) = \det(B)\det(C)^2\det(B)^{-1} = \det(C)^2 = 64.$$