
Announcements
Wednesday, November 7

I The third midterm is on Friday, November 16.
I That is one week from this Friday.
I The exam covers §§4.5, 5.1, 5.2. 5.3, 6.1, 6.2, 6.4, 6.5 (through today’s

material).

I WeBWorK 6.1, 6.2 are due today at 11:59pm.

I The quiz on Friday covers §§6.1, 6.2.

I My office is Skiles 244 and Rabinoffice hours are: Mondays, 12–1pm;
Wednesdays, 1–3pm.



Diagonalizable Matrices
Review

Recall: an n × n matrix A is diagonalizable if it is similar to a diagonal matrix:

A = CDC−1 for D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 .

It is easy to take powers of diagonalizable matrices:

Ai = CD iC−1 = C


λi
1 0 · · · 0

0 λi
2 · · · 0

...
...

. . .
...

0 0 · · · λi
n

C−1.

We begin today by discussing the geometry of diagonalizable matrices.



Geometry of Diagonal Matrices

A diagonal matrix D =
(
2 0
0 −1

)
just scales the coordinate axes:(

2 0
0 −1

)(
1
0

)
= 2

(
1
0

) (
2 0
0 −1

)(
0
1

)
= −1

(
0
1

)
.

This is easy to visualize:

v1

v2x

Dv1

Dv2Dx

D

x =

(
−1
1

)
=⇒ Dx =

(
−2
−1

)
.



Geometry of Diagonalizable Matrices

We had this example last time: A = CDC−1 for

A =

(
1/2 3/2
3/2 1/2

)
D =

(
2 0
0 −1

)
C =

(
1 1
1 −1

)
The eigenvectors of A are v1 =

(
1
1

)
and v2 =

(
1
−1

)
with eigenvalues 2 and −1.

The eigenvectors form a basis for R2 because they’re linearly independent.

Any vector can be written as a linear combination of basis vectors:

x = a1v1 + a2v2 =⇒ Ax =

A(a1v1 + a2v2) = a1Av1 + a2Av2 = 2a1v1 − a2v2.

Conclusion: A scales the “v1-direction” by 2 and the “v2-direction” by −1.

v1

v2

Av1
Av2

[interactive]

A

http://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=1/2,3/2:3/2,1/2&nomult


Geometry of Diagonalizable Matrices
Continued

Example: x =
(

0
−2

)
= −1v1 + 1v2

Ax = −1Av1 + 1Av2 = −2v1 +−1v2

= −2

(
1
1

)
−
(

1
−1

)
=

(
−3
−1

)
.

v1

v2

x

Av1Av2

Ax

A

Example: y = 1
2

(
5
−3

)
= 1

2
v1 + 2v2

Ay =
1

2
Av1 + 2Av2 = 1v1 +−2v2

=

(
1
1

)
− 2

(
1
−1

)
=

(
−1
3

)
.

v1

v2 y

Av1
Av2

AyA



Dynamics of Diagonalizable Matrices

We motivated diagonalization by taking powers:

Ai = CD iC−1 = C


λi
1 0 · · · 0

0 λi
2 · · · 0

...
...

. . .
...

0 0 · · · λi
n

C−1.

This lets us compute powers of matrices easily. How to visualize this?

Anv = A(A(A · · · (Av)) · · · )

Multiplying a vector v by An means repeatedly multiplying by A.



Dynamics of Diagonalizable Matrices
Example

A =
1

10

(
11 6
9 14

)
= CDC−1 for C =

(
2/3 1
−1 1

)
D =

(
2 0
0 1/2

)
.

Eigenvectors of A are v1 =
(
2/3
−1

)
and v2 =

(
1
1

)
with eigenvalues 2 and 1/2.

A(a1v1 + a2v2) = 2a1v1 +
1

2
a2v2

A2(a1v1 + a2v2) = 4a1v1 +
1

4
a2v2

A3(a1v1 + a2v2) = 8a1v1 +
1

8
a2v2

...

An(a1v1 + a2v2) = 2na1v1 +
1

2n
a2v2

What does repeated application of A do geometrically?

It makes the “v1-coordinate” very big, and the “v2-coordinate” very small.

[interactive]

http://textbooks.math.gatech.edu/ila/demos/dynamics.html?mat=2,0:0,1/2&v1=2/3,-1,0&v2=1,1,0


Dynamics of Diagonalizable Matrices
Another Example

A =
1

6

(
5 −1
−2 4

)
= CDC−1 for C =

(
−1 1/2
1 1

)
D =

(
1 0
0 1/2

)
.

Eigenvectors of A are v1 =
(−1

1

)
and v2 =

(
1/2
1

)
with eigenvalues 1 and 1/2.

A(a1v1 + a2v2) = a1v1 +
1

2
a2v2

A2(a1v1 + a2v2) = a1v1 +
1

4
a2v2

A3(a1v1 + a2v2) = a1v1 +
1

8
a2v2

...

An(a1v1 + a2v2) = a1v1 +
1

2n
a2v2

What does repeated application of A do geometrically?

It “sucks everything into the 1-eigenspace.”

[interactive]

http://textbooks.math.gatech.edu/ila/demos/dynamics.html?mat=1,0:0,1/2&v1=-1,1,0&v2=1/2,1,0


Dynamics of Diagonalizable Matrices
Poll

A =
1

30

(
12 2
3 13

)
= CDC−1 for C =

(
2/3 −1

1 1

)
D =

(
1/2 0

0 1/3

)
.

What does repeated application of A do geometrically?
A. Sucks all vectors into a line.

B. Sucks all vectors into the origin.

C. Shoots all vectors away from a line.

D. Shoots all vectors away from the origin.

Poll

B. Since both eigenvalues are less than 1, the matrix A scales both directions
towards the origin.

[interactive]

http://textbooks.math.gatech.edu/ila/demos/dynamics.html?mat=1/2,0:0,1/3&v1=2/3,1,0&v2=-1,1,0


Section 6.5

Complex Eigenvalues



A Matrix with No Eigenvectors

Consider the matrix for the linear transformation for rotation by π/4 in the
plane. The matrix is:

A =
1√
2

(
1 −1
1 1

)
.

This matrix has no eigenvectors, as you can see geometrically: [interactive]

A

no nonzero vector x
is collinear with Ax

or algebraically:

f (λ) = λ2 − Tr(A)λ+ det(A) = λ2 −
√

2λ+ 1 =⇒ λ =

√
2±
√
−2

2
.

http://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=1/sqrt(2),-1/sqrt(2),1/sqrt(2),1/sqrt(2)


Complex Numbers

It makes us sad that −1 has no square root. If it did, then
√
−2 =

√
2 ·
√
−1.

Mathematician’s solution: we’re just not using enough numbers! We’re going
to declare by fiat that there exists a square root of −1.

Definition
The number i is defined such that i2 = −1.

Once we have i , we have to allow numbers like a + bi for real numbers a, b.

Definition
A complex number is a number of the form a + bi for a, b in R. The set of all
complex numbers is denoted C.

Note R is contained in C: they’re the numbers a + 0i .

We can identify C with R2 by a + bi ←→
(
a
b

)
. So when we draw a picture of C,

we draw the plane:

real axis

imaginary axis

1
i

1− i



Operations on Complex Numbers

Addition:

(2− 3i) + (−1 + i) = 1− 2i .

Multiplication:

(2−3i)(−1 + i) = 2(−1) + 2i + 3i −3i2 = −2 + 5i + 3 = 1 + 5i .

Complex conjugation: a + bi = a− bi is the complex conjugate of a + bi .
Check: z + w = z + w and zw = z · w .

Absolute value: |a + bi | =
√
a2 + b2. This is a real number.

Note: (a+bi)(a + bi) = (a+bi)(a−bi) = a2− (bi)2 = a2 +b2. So |z | =
√
zz .

Check: |zw | = |z | · |w |.

Division by a nonzero real number:
a + bi

c
=

a

c
+

b

c
i .

Division by a nonzero complex number:
z

w
=

zw

ww
=

zw

|w |2 .

Example:
1 + i

1− i
=

(1 + i)2

12 + (−1)2
=

1 + 2i + i2

2
= i .

Real and imaginary part: Re(a + bi) = a Im(a + bi) = b.



The Fundamental Theorem of Algebra

The whole point of using complex numbers is to solve polynomial equations. It
turns out that they are enough to find all solutions of all polynomial equations:

Fundamental Theorem of Algebra

Every polynomial of degree n has exactly n complex roots, counted with
multiplicity.

Equivalently, if f (x) = xn + an−1x
n−1 + · · ·+ a1x + a0 is a polynomial of degree

n, then
f (x) = (x − λ1)(x − λ2) · · · (x − λn)

for (not necessarily distinct) complex numbers λ1, λ2, . . . , λn.

If f is a polynomial with real coefficients, and if λ is a complex root of
f , then so is λ:

0 = f (λ) = λn + an−1λn−1 + · · ·+ a1λ+ a0

= λn + an−1λ
n−1 + · · ·+ a1λ+ a0 = f

(
λ
)
.

Therefore complex roots of real polynomials come in conjugate pairs.

Important



The Fundamental Theorem of Algebra
Examples

Degree 2: The quadratic formula gives you the (real or complex) roots of any
degree-2 polynomial:

f (x) = x2 + bx + c =⇒ x =
−b ±

√
b2 − 4c

2
.

For instance, if f (λ) = λ2 −
√

2λ+ 1 then

λ =

√
2±
√
−2

2
=

√
2

2
(1± i) =

1± i√
2
.

Note the roots are complex conjugates if b, c are real.



The Fundamental Theorem of Algebra
Examples

Degree 3: A real cubic polynomial has either three real roots, or one real root
and a conjugate pair of complex roots. The graph looks like:

or

respectively.



A Matrix with an Eigenvector

Every matrix is guaranteed to have complex eigenvalues and eigenvectors.
Using rotation by π/4 from before:

A =
1√
2

(
1 −1
1 1

)
has eigenvalues λ =

1± i√
2
.

Let’s compute an eigenvector for λ = (1 + i)/
√

2:

A− λI =
1√
2

(
1− (1 + i) −1

1 1− (1 + i)

)
=

1√
2

(
−i −1
1 −i

)
.

The second row is i times the first, so we row reduce:

1√
2

(
−i −1
1 −i

)
1√
2

(
−i −1
0 0

) divide by −i/
√
2 (

1 −i
0 0

)
.

The parametric form is x = iy , so an eigenvector is

(
i
1

)
.

A similar computation shows that an eigenvector for λ = (1− i)/
√

2 is

(
−i
1

)
.

So is i

(
−i
1

)
=

(
1
i

)
(you can scale by complex numbers).



Conjugate Eigenvectors

For A =
1√
2

(
1 −1
1 1

)
,

the eigenvalue
1 + i√

2
has eigenvector

(
i
1

)
.

the eigenvalue
1− i√

2
has eigenvector

(
−i
1

)
.

Do you notice a pattern?

Fact
Let A be a real square matrix. If λ is a complex eigenvalue with eigenvector v ,
then λ is an eigenvalue with eigenvector v .

Why?
Av = λ =⇒ Av = Av = λv = λv .

Both eigenvalues and eigenvectors of real square
matrices occur in conjugate pairs.



A 3 × 3 Example

Find the eigenvalues and eigenvectors of

A =

 4
5
− 3

5
0

3
5

4
5

0
0 0 2

 .

The characteristic polynomial is

f (λ) = det

 4
5
− λ − 3

5
0

3
5

4
5
− λ 0

0 0 2− λ

 = (2− λ)

(
λ2 − 8

5
λ+ 1

)
.

This factors out
automatically if you

expand cofactors along
the third row or column

We computed the roots of this polynomial (times 5) before:

λ = 2,
4 + 3i

5
,

4− 3i

5
.

We eyeball an eigenvector with eigenvalue 2 as (0, 0, 1).



A 3 × 3 Example
Continued

A =

 4
5
− 3

5
0

3
5

4
5

0
0 0 2


To find the other eigenvectors, we row reduce:

A− 4 + 3i

5
I =

− 3
5
i − 3

5
0

3
5

− 3
5
i 0

0 0 2− 4+3i
5

 scale rows

−i −1 0
1 −i 0
0 0 1


The second row is i times the first:

row replacement
−i −1 0

0 0 0
0 0 1

 divide by −i ,swap
 1 −i 0

0 0 1
0 0 0

 .

The parametric form is x = iy , z = 0, so an eigenvector is

 i
1
0

. Therefore, an

eigenvector with conjugate eigenvalue
4− 3i

5
is

−i1
0

.



Summary

I Diagonal matrices are easy to understand geometrically.

I Diagonalizable matrices behave like diagonal matrices, except with respect
to a basis of eigenvectors.

I Repeatedly multiplying by a matrix leads to fun pictures.

I One can do arithmetic with complex numbers just like real numbers: add,
subtract, multiply, divide.

I An n × n matrix always exactly has complex n eigenvalues, counted with
(algebraic) multiplicity.

I The complex eigenvalues and eigenvectors of a real matrix come in
complex conjugate pairs:

Av = λv =⇒ Av = λv .


