

Supplemental problems: §2.2, §2.3

Solutions

1. Put an augmented matrix into reduced row echelon form to solve the system

$$\begin{aligned}x_1 - 2x_2 - 9x_3 + x_4 &= 3 \\4x_2 + 8x_3 - 24x_4 &= 4\end{aligned}$$

Solution.

$$\begin{array}{cccc|c}1 & -2 & -9 & 1 & 3 \\ 0 & 4 & 8 & -24 & 4\end{array} \xrightarrow{R_2=\frac{R_2}{4}} \begin{array}{cccc|c}1 & -2 & -9 & 1 & 3 \\ 0 & 1 & 2 & -6 & 1\end{array} \xrightarrow{R_1=R_1+2R_2} \begin{array}{cccc|c}1 & 0 & -5 & -11 & 5 \\ 0 & 1 & 2 & -6 & 1\end{array}$$

The third and fourth columns are not pivot columns, so x_3 and x_4 are free variables. Our equations are

$$\begin{aligned}x_1 - 5x_3 - 11x_4 &= 5 \\x_2 + 2x_3 - 6x_4 &= 1\end{aligned}$$

Therefore,

$$\begin{aligned}x_1 &= 5 + 5x_3 + 11x_4 \\x_2 &= 1 - 2x_3 + 6x_4 \\x_3 &= x_3 \quad (\text{any real number}) \\x_4 &= x_4 \quad (\text{any real number})\end{aligned}$$

2. We can use linear algebra to find a polynomial that fits given data, in the same way that we found a circle through three specified points in the §2.1 WeBWorK.

Is there a degree-three polynomial $P(x)$ whose graph passes through the points $(-2, 6)$, $(-1, 4)$, $(1, 6)$, and $(2, 22)$? If so, how many degree-three polynomials have a graph through those four points? We answer this question in steps below.

- If $P(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ is a degree-three polynomial passing through the four points listed above, then $P(-2) = 6$, $P(-1) = 4$, $P(1) = 6$, and $P(2) = 22$. Write a system of four equations which we would solve to find a_0 , a_1 , a_2 , and a_3 .
- Write the augmented matrix to represent this system and put it into reduced row-echelon form. Is the system consistent? How many solutions does it have?

Solution.

a) We compute

$$\begin{aligned}
 P(-2) = 6 &\implies a_0 + a_1 \cdot (-2) + a_2 \cdot (-2)^2 + a_3 \cdot (-2)^3 = 6, \\
 P(-1) = 4 &\implies a_0 + a_1 \cdot (-1) + a_2 \cdot (-1)^2 + a_3 \cdot (-1)^3 = 4, \\
 P(1) = 6 &\implies a_0 + a_1 \cdot 1 + a_2 \cdot 1^2 + a_3 \cdot 1^3 = 6, \\
 P(2) = 22 &\implies a_0 + a_1 \cdot 2 + a_2 \cdot 2^2 + a_3 \cdot 2^3 = 22.
 \end{aligned}$$

Simplifying gives us

$$\begin{aligned}
 a_0 - 2a_1 + 4a_2 - 8a_3 &= 6 \\
 a_0 - a_1 + a_2 - a_3 &= 4 \\
 a_0 + a_1 + a_2 + a_3 &= 6 \\
 a_0 + 2a_1 + 4a_2 + 8a_3 &= 22.
 \end{aligned}$$

b) The corresponding augmented matrix is

$$\left(\begin{array}{cccc|c} 1 & -2 & 4 & -8 & 6 \\ 1 & -1 & 1 & -1 & 4 \\ 1 & 1 & 1 & 1 & 6 \\ 1 & 2 & 4 & 8 & 22 \end{array} \right)$$

We label pivots with boxes as we proceed along. First, we subtract row 1 from each of rows 2, 3, and 4.

$$\left(\begin{array}{cccc|c} 1 & -2 & 4 & -8 & 6 \\ 1 & -1 & 1 & -1 & 4 \\ 1 & 1 & 1 & 1 & 6 \\ 1 & 2 & 4 & 8 & 22 \end{array} \right) \xrightarrow{\text{~~~~~}} \left(\begin{array}{cccc|c} 1 & -2 & 4 & -8 & 6 \\ 0 & 1 & -3 & 7 & -2 \\ 0 & 3 & -3 & 9 & 0 \\ 0 & 4 & 0 & 16 & 16 \end{array} \right)$$

We now create zeros below the second pivot by subtracting multiples of the second row, then divide by 6 to get

$$\left(\begin{array}{cccc|c} 1 & -2 & 4 & -8 & 6 \\ 0 & 1 & -3 & 7 & -2 \\ 0 & 0 & 6 & -12 & 6 \\ 0 & 0 & 12 & -12 & 24 \end{array} \right) \xrightarrow{\text{~~~~~}} \left(\begin{array}{cccc|c} 1 & -2 & 4 & -8 & 6 \\ 0 & 1 & -3 & 7 & -2 \\ 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 12 & -12 & 24 \end{array} \right).$$

Now we subtract a 12 times row 3 from row 4 and divide by 12:

$$\left(\begin{array}{cccc|c} 1 & -2 & 4 & -8 & 6 \\ 0 & 1 & -3 & 7 & -2 \\ 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 12 & 12 \end{array} \right) \xrightarrow{\text{~~~~~}} \left(\begin{array}{cccc|c} 1 & -2 & 4 & -8 & 6 \\ 0 & 1 & -3 & 7 & -2 \\ 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{array} \right).$$

At this point we can actually use back-substitution to solve: the last row says $a_3 = 1$, then plugging in $a_3 = 1$ in the third row gives us $a_2 = 3$, etc. However, for the sake of practice with reduced echelon form, let's keep row-reducing.

From right to left, we create zeros above the pivots in pivot columns by subtracting multiples of the pivot columns.

$$\begin{array}{c}
 \left(\begin{array}{cccc|c} 1 & -2 & 4 & -8 & 6 \\ 0 & 1 & -3 & 7 & -2 \\ 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{array} \right) \xrightarrow{\sim\sim\sim\sim} \left(\begin{array}{cccc|c} 1 & -2 & 4 & 0 & 14 \\ 0 & 1 & -3 & 0 & -9 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{array} \right) \\
 \xrightarrow{\sim\sim\sim\sim} \left(\begin{array}{cccc|c} 1 & -2 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{array} \right) \\
 \xrightarrow{\sim\sim\sim\sim} \left(\begin{array}{cccc|c} 1 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{array} \right)
 \end{array}$$

So $a_0 = 2$, $a_1 = 0$, $a_2 = 3$, and $a_3 = 1$. In other words,

$$P(x) = 2 + 3x^2 + x^3.$$

Therefore, there is exactly one third-degree polynomial satisfying the conditions of the problem. (You should check that, in fact, we have $P(-2) = 6$, $P(-1) = 4$, etc.)