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Please read all instructions carefully before beginning.

• Each problem is worth 10 points. The maximum score on this exam is 100 points.

• You have 170 minutes to complete this exam.

• You may not use any calculators or aids of any kind (notes, text, etc.).

• Please show your work. A correct answer without appropriate work will receive little
or no credit.

• You may cite any theorem proved in class or in the sections we covered in the text.

• Check your answers if you have time left! Most linear algebra computations can be
easily verified for correctness.

• Good luck!

This is a practice exam. It is meant to be roughly similar in format,
length, and difficulty to the real exam. It is not meant as a comprehen-
sive list of study problems.



Scoring Page

Please do not write on this page.

1 2 3 4 5 6 7 8 9 10 Total



Problem 1.

True or false. Circle T if the statement is always true. Otherwise, circle F.
You do not need to justify your answer, and there is no partial credit.
In each case, assume that the entries of all matrices and all vectors are real numbers.

a) T F If A is an n× n matrix and rank(A) = 1, then every column vector of A
lies on the same line through the origin in Rn.

b) T F The transformation T : R3→ R3 given below is linear.

T

 

x
y
z

!

=

 

x − y
x + y
z + 1

!

.

c) T F Let W = Span

( 

0
1
1

!

,

 

1
0
1

!)

. The matrix A for orthogonal projection

onto W is

A=

 

0 1 −1
1 0 −1
1 1 1

! 

1 0 0
0 1 0
0 0 0

! 

0 1 −1
1 0 −1
1 1 1

!−1

.

d) T F The least-squares solution to Ax = b is unique if

A=

 

1 1
2 2
0 0

!

and b =

 

1
0
0

!

.

e) T F Suppose u, v, w are vectors in Rn. If u is orthogonal to v and u is or-
thogonal to w, then u is orthogonal to v −w.

Solution.

a) True: Since rank(A) = 1, all n columns together span only some line ` through the
origin, so they all lie on that line `.

b) False: T (0, 0,0) = (0, 0,1), so T is not linear.

c) True: By the Diagonalization Theorem, we see A fixes all vectors in W and destroys

all vectors in W⊥, which is Span

( −1
−1
1

!)

.



d) False. The equation AT Abx = AT b is
�

5 5
5 5

�

bx =
�

1
1

�

which has infinitely many

solutions. Alternatively, we can see that there will be infinitely solutions by observing
that the columns of A are linearly dependent.

e) True: Geometrically, if u is orthogonal to v and w, then u is orthogonal to every
vector in the subspace spanned by v and w, so u is orthogonal to v−w. Alternatively,
we can see it algebraically through the dot product u·(v−w) = u·v−u·w= 0−0= 0.



Problem 2.

Short answer questions: you need not explain your answers, but show any computations
in part (d). In each case, assume that the entries of all matrices are real numbers.

a) Give an example of a 3×3 matrix whose eigenspace corresponding to the eigenvalue
λ= 4 is a two-dimensional plane.

b) Let A=





a 15 7
0 3 5
0 0 1

6



.

A is not invertible when a = .

In this case, A is / is not diagonalizable (circle one.)

c) Suppose A is a 3× 3 matrix. Which of the following are possible?
(Circle all that apply.)

(1) All of its eigenvalues are real, and the matrix is not diagonalizable.

(2) Its eigenspace corresponding to the eigenvalue λ = −5 is a plane, and the
algebraic multiplicity of −5 as an eigenvalue is 1.

(3) Every nonzero vector in R3 is an eigenvector of A.

d) Find the area of the triangle with vertices (−3, 1), (0,2), (−1,−2).

Solution.

a)

 

1 0 0
0 4 0
0 0 4

!

.

b) The determinant of A is a · 3 · 1/6 = a/2, which is zero when a = 0. In this case, A
is diagonalizable, as it has three distinct eigenvalues 0,3, 1/6.

c) (1) is possible, for example A=

 

1 1 0
0 1 0
0 0 1

!

.

(2) is impossible since geometric multiplicity cannot be greater than alg. mult.
(3) is possible, for example when A is the 3× 3 identify matrix.

d) The vector from (−3, 1) to (0, 2) is
�

3
1

�

. The vector from (−3,1) to (−1,−2) is
�

2
−3

�

.

The triangle’s area is half the area of the parallelogram using
�

3
1

�

and
�

2
−3

�

.

Area=
1
2

�

�

�

�

det
�

3 2
1 −3

�

�

�

�

�

=
1
2

�

�− 9− 2
�

�=
11
2

.



We could have used the transpose of the matrix above, or reversed the order of the
vectors, etc. For example,

Area=
1
2

det

�

�

�

�

�

3 1
2 −3

�

�

�

�

�

=
1
2
| − 11|=

11
2

.



Problem 3.
Short answer questions: you need not explain your answers. In each case, assume that
the entries of all matrices and vectors are real numbers.

a) Which of the following are subspaces of R3? Circle all that apply.

(1) Nul(A), where A=







1 0 2
−1 2 0

0 3 3
3 1 4






.

(2) The set of solutions to T (v) =

 

0
1
0

!

, where T

 

x
y
z

!

=

 

z
y
x

!

.

(3) The eigenspace corresponding to λ= 1, for any 3×3 matrix B that has 1 as an
eigenvalue.

b) Let T : R4 → R3 be a linear transformation with standard matrix A, so T (v) = Av.
Which of the following are possible? Circle all that apply.

(1) The equation Ax = 0 has only the trivial solution.

(2) rank(A) = dim(Nul A).

(3) The equation Ax = b is consistent for each b in R3.

c) Suppose det

 

a b c
d e f
g h i

!

= −2. Find det(3A) if A=

 −4a+ d −4b+ e −4c + f
a b c
g h i

!

.

d) Let v, w in R6 be orthogonal vectors with ‖v‖= 2 and ‖w‖= 3. Let

x = 3v −w y = v +w .

Find the dot product x · y



Solution.
a) (1) is a subspace, since A is a 4× 3 matrix and thus Nul(A) is a subspace of R3.

(3) is also a subspace, as it is Nul(B − I).
However, (2) does not contain the zero vector and therefore is not a subspace.

b) (1) is not possible: A has 4 columns but at most 3 pivots, so the homogeneous equa-
tion will have a free variable and thus infinitely many solutions.

(2) is possible: rank(A)+dim(Nul A) = 4, and by taking A=

 

1 0 0 0
0 1 0 0
0 0 0 0

!

we see

an example where rank(A) = dim(Nul A) = 2.

(3) is possible: if we take A=

 

1 0 0 0
0 1 0 0
0 0 1 0

!

, then the columns of A span R3.

c) To get A, we start with the given matrix, subtract four times the first row from the
second (which doesn’t change the determinant), then swap the first two rows (mul-
tiplies determinant by −1), so det(A) = −2(−1) = 2.

det(3A) = 33(2) = 54.

d) (3v −w) · (v +w) = 3v · v + 3v ·w−w · v −w ·w = 3(22) + 0− 0− 9 = 3.



Problem 4.

a) Let T : R2→ R2 be the rotation counterclockwise by 90 degrees. Find the standard
matrix A for T (in other words, T (v) = Av).

b) Let U : R3→ R2 be the linear transformation given by

U

 

x
y
z

!

=
�

z − x
x + y + z

�

.

Find the standard matrix B for U .

c) Compute (T ◦ U)

 

2
0
1

!

.

Solution.

a) A=
�

cos(90◦) − sin(90◦)
sin(90◦) cos(90◦)

�

=
�

0 −1
1 0

�

.

b) B =
�

U(e1) U(e2) U(e3)
�

=
�

−1 0 1
1 1 1

�

.

c) (T ◦ U)

 

2
0
1

!

= AB

 

2
0
1

!

=
�

0 −1
1 0

��

−1 0 1
1 1 1

�

 

2
0
1

!

=
�

0 −1
1 0

��

−1
3

�

=
�

−3
−1

�

.



Problem 5.

Consider the subspace V of R4 given by

V =

















x
y
z
w







�

�

� x − 2y + 5z = 0 and −
z
2
+w= 0











.

a) Find a basis for V .

b) Find a basis for V⊥.

c) Is there a matrix A so that Col(A) = V? If so, find such an A. If not, justify why no
such A exists.

Solution.

a) V is the set of solutions to the following augmented system:

�

1 −2 5 0 0
0 0 −1/2 1 0

�

R1 = R1+10R2−−−−−−−−→
R2 = −2R2

�

1 −2 0 10 0
0 0 1 −2 0

�

.

Therefore, x = 2y − 10w, y = y , z = 2w, and w= w.







x
y
z
w






=







2y − 10w
y

2w
w






= y







2
1
0
0






+w







−10
0
2
1






, so B =

















2
1
0
0






,







−10
0
2
1

















.

b) If we put the basis vectors as columns of a matrix B, then V⊥ = Nul(BT ).

�

2 1 0 0 0
−10 0 2 1 0

�

R1↔R2−−−−→
�

−10 0 2 1 0
2 1 0 0 0

�

R2 = R2+
R1
5−−−−−−→

R1 = −
R1
10

�

1 0 −1/5 −1/10 0
0 1 2/5 1/5 0

�

.

So x = z
5 +

w
10 , y = −2z

5 −
w
5 , z = z, w= w.







x
y
z
w






=







z
5 +

w
10

−2z
5 −

w
5

z
w






= z







1
5
0
−2

5
0






+w







1
10
−1

5
0
1






, so C =

















1
5
−2

5
1
0






,







1
10
−1

5
0
1

















.



Alternatively, V is the set of all vectors orthogonal to both







1
−2
5
0






and







0
0
−1/2

1






.

This means V⊥ is spanned by the (linearly independent) vectors







1
−2
5
0






and







0
0
−1/2

1






,

hence C =

















1
−2
5
0






,







0
0
−1/2

1

















is a basis of V⊥.

c) Yes. Just take A to be the matrix whose columns are the basis vectors for V ,

A=







2 −10
1 0
0 2
0 1






.

Many answers are possible, for example, the A matrices below satisfy Col(A) = V .

A=







2 −10 0 0
1 0 0 0
0 2 0 0
0 1 0 0







A=







2 −10 −8
1 0 1
0 2 2
0 1 1






(the third column is the sum of the first two) .



Problem 6.
Consider the matrix

A=

 

1 1 1
0 −1 1
0 0 1

!

a) Find the eigenvalues of A.

b) Find the eigenspace for each eigenvalue of A.

c) Is A diagonalizable? If your answer is yes, find an invertible P and a diagonal matrix
D so that A= PDP−1. If your answer is no, explain why A is not diagonalizable.

Solution.
a) A is upper triangular, so the eigenvalues are on the diagonal 1, 1,−1.

b) For λ1 = 1, we find the null space of A− I3 =

 

0 1 1
0 −2 1
0 0 0

!

. This is Span

( 

1
0
0

!)

.

For λ2 = −1, we find the null space of A+ I3 =

 

2 1 1
0 0 1
0 0 2

!

. This is Span

( 

1
−2
0

!)

.

c) A is not diagonalizable since A does not have three linearly independent eigenvec-
tors: it only has two.



Problem 7.

Let A=
�

−2 5
−2 4

�

.

a) Find the (complex) eigenvalues of A. For full credit, you must write your answers in
the spaces below.

The eigenvalue with positive imaginary part is λ1 = .

The eigenvalue with negative imaginary part is λ2 = .

b) For each of the eigenvalues of A, find an eigenvector.
For full credit, you must write your answers in the spaces below.

Solution.
a) The characteristic polynomial is

det
�

−2−λ 5
−2 4−λ

�

= −8+ 2λ− 4λ+λ2 + 10= λ2 − 2λ+ 2.

The characteristic polynomial is λ2 − Tr(A)λ+ det(A) = λ2 − 2λ+ 2

λ2 − 2λ+ 2= 0 ⇐⇒ λ=
2±
p
−4

2
= 1± i,

so the eigenvalues are λ1 = 1+ i and λ2 = 1− i .

b) Fix the eigenvalue λ1 = 1+ i.

A− (1+ i)I =
�

−3− i 5
∗ ∗

�

, so an eigenvector for λ1 is v1 =
�

5
3+ i

�

.

Thus, an eigenvector for λ2 = 1− i is v2 = v1 =
�

5
3− i

�

.

Alternative method for eigenvectors:
�

A− (1+ i)I 0
�

row-reduces to
�

1 −3
2 +

i
2 0

0 0 0

�

, so another possible eigenvec-

tor for λ1 = 1+ i is v1 =
�3

2 −
i
2

1

�

, or v1 =
�

3− i
2

�

.

Similarly, if the student row-reduces
�

A− (1− i)I 0
�

then they will get
�

1 −3
2 −

i
2 0

0 0 0

�

,

so another possible eigenvector for λ1 = 1− i is v2 =
�3

2 +
i
2

1

�

, or v2 =
�

3+ i
2

�

.



Problem 8.
Consider an internet with three pages 1, 2, and 3.

• Page 1 links to pages 2 and 3.
• Page 2 links only to page 3.
• Page 3 links to Page 1 and 2.

a) Write the importance matrix A for this internet.

b) Find the steady-state vector v for A.

c) Which page has the highest page rank?

Solution.
a)

A=

 

0 0 1/2
1/2 0 1/2
1/2 1 0

!

.

b) We row-reduce
�

A− I 0
�

.

�

A− I 0
�

=





−1 0 1/2 0
1/2 −1 1/2 0
1/2 1 −1 0





R2=R2+R1/2−−−−−−−→
R3=R3+R1/2





−1 0 1/2 0
0 −1 3/4 0
0 1 −3/4 0





R3=R3+R2−−−−−−−−−−−−−→
then R1=−R1, R2=−R2





1 0 −1/2 0
0 1 −3/4 0
0 0 0 0





So x1 =
x3
2 , x2 =

3x3
4 , and x3 is free. One 1-eigenvector is

w=

 

1/2
3/4
1

!

, so v =
1

1
2 +

3
4 + 1

w =

 

2/9
1/3
4/9

!

.

c) The largest entry in the steady-state vector is its third entry 4/9, so page 3 has the
highest rank.



Problem 9.
Let W be the line y = −3x in R2, and let T : R2 → R2 be the linear transformation
corresponding to orthogonal projection onto W .

a) Find the standard matrix A for T .

b) Draw W⊥ below. Be precise!
Note W⊥ goes through (0, 0), (3,1), and (−3,−1).

-3 -2 -1 1 2 3
x

-3

-2

-1

1

2

3
y

W W
⊥

c) Let z =
�

−2
−1

�

. Find vectors zW in W and zW⊥ in W⊥ so that z = zW + zW⊥ .

Solution.
a) The projection is

W =
1

u · u
uuT =

1
12 + (−3)2

�

1
−3

�

�

1 −3
�

=
1
10

�

1 −3
−3 9

�

=









1
10

−
3
10

−
3
10

9
10









.

Alternatively, we could have used the equivalent formula

W = u(uT u)−1uT = u
1
||u||2

uT =
1
||u||2

uuT .

b)
�

3
1

�

is orthogonal to
�

1
−3

�

, so W⊥ is the line y =
x
3

. Alternatively: the line perpen-

dicular to y = −3x has slope the negative reciprocal of −3, so y = −
�

1
−3

�

x =
x
3

.

c) zW = projW (z) =
�

1/10 −3/10
−3/10 9/10

��

−2
−1

�

=
�

1/10
−3/10

�

, so

zW⊥ = z − zW =
�

−2
−1

�

−
�

1/10
−3/10

�

=
�

−21/10
−7/10

�

.



Problem 10.
Find the least-squares line y = M x + B that approximates the data points

(−2,−11), (0,−2), (4, 2).

Solution.

If there were a line through the three data points, we would have:

(x = −2) B +M(−2) = −11

(x = 0) B +M(0) = −2
(x = 4) B +M(4) = 2.

This is the matrix equation

 

1 −2
1 0
1 4

!

�

B
M

�

=

 −11
−2
2

!

.

Thus, we are solving the least-squares problem to Av = b, where

A=

 

1 −2
1 0
1 4

!

b =

 −11
−2
2

!

.

We solve AT Abx = AT b, where bx =
�

B
M

�

.

AT A=
�

1 1 1
−2 0 4

�

 

1 −2
1 0
1 4

!

=
�

3 2
2 20

�

,

AT b =
�

1 1 1
−2 0 4

�

 −11
−2
2

!

=
�

−11
30

�

.

�

3 2 −11
2 20 30

�

R1↔R2−−−−→
�

2 20 30
3 2 −11

�

R2 = R2−
3R1

2−−−−−−−→
R1 = R1/2

�

1 10 15
0 −28 −56

�

R2 = −
R2
28−−−−−−−−→

R1 = R1−10R2

�

1 0 −5
0 1 2

�

.

So bx =
�

−5
2

�

. In other words, y = −5+ 2x , or y = 2x − 5 .



Scratch paper. This sheet will not be graded under any circumstances.


