

MATH 1553-C
MIDTERM EXAMINATION 2

Name		GT Email	@gatech.edu
------	--	----------	-------------

Please **read all instructions** carefully before beginning.

- Please leave your GT ID card on your desk until your TA scans your exam.
- Each problem is worth 10 points. The maximum score on this exam is 50 points.
- You have 50 minutes to complete this exam.
- There are no aids of any kind (notes, text, calculator, etc.) allowed.
- Please show your work unless instructed otherwise.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

$$\begin{bmatrix} \cos 90^\circ & \sin 90^\circ \\ -\sin 90^\circ & \cos 90^\circ \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

(This is a joke, not a hint.)

[This page intentionally left blank]

Problem 1.

[2 points each]

a) Which of the following are subspaces of \mathbf{R}^3 ? Circle all that apply.

(i) the solution set of $\begin{cases} x - 2y = 0 \\ 2x - 4y = 0 \\ -x + 2y = 0 \end{cases}$ (ii) $\text{Col} \begin{pmatrix} 1 & -2 \\ 2 & -4 \\ -1 & 2 \end{pmatrix}$ (iii) $\text{Nul} \begin{pmatrix} 1 & 2 & 3 \\ -2 & -4 & -6 \end{pmatrix}$

(iv) $\text{Span} \left\{ \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 2 \\ -4 \end{pmatrix}, \begin{pmatrix} 3 \\ -6 \end{pmatrix} \right\}$ (v) the solution set of $\begin{pmatrix} 1 & 2 & 3 \\ -2 & -4 & -6 \end{pmatrix} x = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$

(vi) the range of a linear transformation with codomain \mathbf{R}^3

In the following questions, circle **T** if the statement is necessarily true, and circle **F** otherwise.

b) **T** **F** There exists a 3×4 matrix A such that $\text{Col} A$ is a plane and $\text{Nul} A$ is a line.

c) **T** **F** If $T: \mathbf{R}^3 \rightarrow \mathbf{R}^4$ is a one-to-one linear transformation, then the set of vectors $\{T(e_1), T(e_2), T(e_3)\}$ is a basis for the range of T .

d) **T** **F** The span of four vectors has dimension 4.

e) **T** **F** If A is an $n \times n$ matrix and $Ae_1 = Ae_2$, then $\text{Col} A$ is not equal to \mathbf{R}^n .

[Scratch work for problem 1]

Problem 2.

[2 points each]

In this problem, it is not necessary to show your work or justify your answers.

- a) Give an example of a linear transformation $T: \mathbf{R}^3 \rightarrow \mathbf{R}^2$ that is not onto.

- b) Give a basis of the xy -plane in \mathbf{R}^3 (the subspace consisting of all vectors with third coordinate equal to zero).

- c) Write a nonzero vector in $\text{Nul } A$, where $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \\ -1 & -2 \end{pmatrix}$.

- d) Complete the following definition:
The dimension of a subspace V of \mathbf{R}^n is ...

- e) Which of the following are one-to-one transformations? (Check all that apply.)
 - $T: \mathbf{R}^3 \rightarrow \mathbf{R}^3$, clockwise rotation by 32° around the z -axis
 - $T: \mathbf{R}^3 \rightarrow \mathbf{R}^3$, projection onto the xy -plane (i.e. set the z -coordinate to 0)
 - $T: \mathbf{R}^3 \rightarrow \mathbf{R}^2$, $T(x, y, z) = (x + y, x - z)$
 - $T: \mathbf{R}^2 \rightarrow \mathbf{R}^3$, $T(x, y) = (x, y, y)$

[Scratch work for problem 2]

Problem 3.

Consider the following vectors:

$$v_1 = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix} \quad v_2 = \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix} \quad v_3 = \begin{pmatrix} 2 \\ 5 \\ -5 \end{pmatrix}$$

and the subspace $V = \text{Span}\{v_1, v_2, v_3\}$.

a) [4 points] Is $\{v_1, v_2, v_3\}$ linearly independent? If so, explain why; if not, produce an equation of linear dependence.

b) [3 points] Find a basis for V .

c) [2 points] Find another basis for V that does not include a multiple of any of the vectors in your answer for (b).

d) [1 points] What is $\dim V$?

[Scratch work for problem 3]

Problem 4.

In this problem we consider two linear transformations:

$T: \mathbf{R}^2 \rightarrow \mathbf{R}^2$ is defined as follows: first it flips the plane over the x -axis, then rotates the plane counterclockwise by 45° , then stretches the x -direction by a factor of 2.

$U: \mathbf{R}^2 \rightarrow \mathbf{R}^3$ is defined by the formula $U \begin{pmatrix} x \\ y \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} + y \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$.

a) [3 points] Compute the standard matrix for T .

b) [2 points] Compute the standard matrix for U .

c) [2 points] Compute the standard matrix for $U \circ T$.

d) [3 points] Which of the following transformations are onto? (Circle all that apply.)

T

U

$U \circ T$

[Scratch work for problem 4]

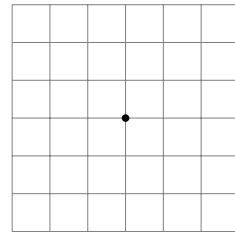
Problem 5.

[10 points]

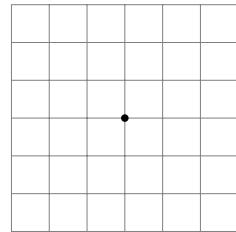
a) Write a 2×2 matrix A such that **the range of $T(x) = Ax$ is a point**, and draw pictures of $\text{Nul } A$ and $\text{Col } A$.

$$A = \begin{pmatrix} & \\ & \end{pmatrix}$$

$$\text{Nul } A =$$



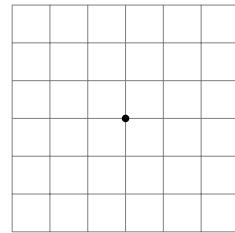
$$\text{Col } A =$$



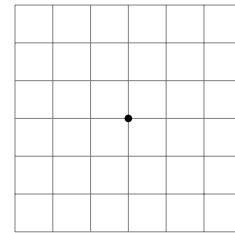
b) Write a 2×2 matrix B such that **$\text{Nul } B$ is a line**, and draw pictures of $\text{Nul } B$ and $\text{Col } B$.

$$B = \begin{pmatrix} & \\ & \end{pmatrix}$$

$$\text{Nul } B =$$



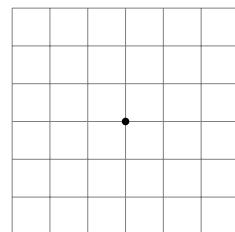
$$\text{Col } B =$$



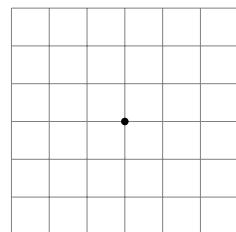
c) Write a 2×2 matrix C with **linearly independent columns**, and draw pictures of $\text{Nul } C$ and $\text{Col } C$.

$$C = \begin{pmatrix} & \\ & \end{pmatrix}$$

$$\text{Nul } C =$$



$$\text{Col } C =$$



(In the grids, the dot is the origin.)

[Scratch work for problem 5]

[Additional scratch work]

[Additional scratch work]