#### MATH 218 SECTION 3 PRACTICE FINAL EXAMINATION

| Name |  | Duke UniqueID |  |
|------|--|---------------|--|
|------|--|---------------|--|

Please **read all instructions** carefully before beginning.

- Do not open this test booklet until you are directed to do so.
- You have 180 minutes to complete this exam.
- If you finish early, go back and check your work.
- This exam is closed book.
- You may use a calculator to do arithmetic, but you should not need one. No other technology is allowed.
- For full credit you must show your work so that your reasoning is clear.
- Do not spend too much time on any one problem. Read them all through first and attack them in an order that allows you to make the most progress.
- Good luck!

This is a practice exam. It is meant to be similar in format, length, and difficulty to the real exam. It is **not** meant as a comprehensive list of study problems. I recommend completing the practice exam in 180 minutes, without notes or distractions.

[This page intentionally left blank]

#### Problem 1.

Acme Widgets, Gizmos, and Doodads has two factories. Factory A makes 10 widgets, 3 gizmos, and 2 doodads every hour, and factory B makes 4 widgets, 1 gizmo, and 1 doodad every hour.

**a)** If factory A runs for *a* hours and factory B runs for *b* hours, how many widgets, gizmos, and doodads are produced? Express your answer as a vector equation.

**b)** A customer places an order for 16 widgets, 5 gizmos, and 3 doodads. Can Acme fill the order with no widgets, gizmos, or doodads left over? If so, how many hours do the factories run? If not, why not?

[Scratch work for problem 1]

# Problem 2.

Consider the vectors

$$\mathbf{v}_1 = \begin{pmatrix} 1\\3\\2 \end{pmatrix} \qquad \mathbf{v}_2 = \begin{pmatrix} -1\\4\\1 \end{pmatrix} \qquad \mathbf{v}_3 = \begin{pmatrix} 1\\h\\5 \end{pmatrix}.$$

**a)** Find the value of *h* for which  $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$  is linearly *dependent*.

**b)** For this value of *h*, produce a linear dependence relation among  $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ .

[Scratch work for problem 2]

# Problem 3.

Consider the matrix

$$A = \begin{pmatrix} 1 & -2 & 2 \\ 1 & -1 & 2 \\ 1 & 1 & 3 \\ 1 & 2 & 4 \end{pmatrix}.$$

**a)** Find the QR decomposition of *A*.

**b)** Find the least squares solution  $\hat{\mathbf{x}}$  of  $A\mathbf{x} = (1, 2, 3, 5)$ , using your QR decomposition above.

**c)** Find the distance of (1, 2, 3, 5) from C(A).

[Scratch work for problem 3]

#### Problem 4.

Given that

$$\det \begin{pmatrix} a & b & c \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = 5,$$

compute the determinants of the following matrices:

$$\begin{pmatrix} 4 & 5 & 6 \\ a & b & c \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 4 & 6 & 5 \\ a & c & b \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 2a & 2b & 2c \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} a & b & c \\ 5 & 7 & 9 \\ 1 & 2 & 3 \end{pmatrix}.$$

#### Problem 5.

For which value(s) of *a* is  $\lambda = 1$  an eigenvector of this matrix?

$$A = \begin{pmatrix} 3 & -1 & 0 & a \\ a & 2 & 0 & 4 \\ 2 & 0 & 1 & -2 \\ 13 & a & -2 & -7 \end{pmatrix}$$

[Scratch work for problem 5]

# Problem 6.

Consider the sequence of numbers 0, 1, 5, 31, 185, ... given by the recursive formula

$$a_0 = 0$$
  
 $a_1 = 1$   
 $a_n = 5a_{n-1} + 6a_{n-2}$   $(n \ge 2).$ 

**a)** Find a matrix *A* such that

$$A\binom{a_{n-2}}{a_{n-1}} = \binom{a_{n-1}}{a_n}$$

for all  $n \ge 2$ .

**b)** Find a basis of  $\mathbf{R}^2$  consisting of eigenvectors of *A*.

**c)** Give a non-recursive formula for  $a_n$ .

[Scratch work for problem 6]

# Problem 7.

Consider the quadratic form

$$q(x, y, z) = 9x^{2} + 10y^{2} + 8z^{2} + 4xy - 4xz.$$

**a)** Construct a symmetric matrix *S* such that  $q(\mathbf{x}) = \mathbf{x}^T S \mathbf{x}$ .

**b)** Find **x** maximizing  $||\mathbf{x}||$  subject to the constraint  $q(\mathbf{x}) = 1$ . [Hint: one of the eigenvalues of *S* is 12.] [Scratch work for problem 7]

# Problem 8.

A certain matrix *A* has singular value decomposition  $A = U\Sigma V^T$ , where

$$U = \begin{pmatrix} | & | & | & | \\ \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 & \mathbf{u}_4 \\ | & | & | & | \end{pmatrix} \qquad \Sigma = \begin{pmatrix} 4 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad V = \begin{pmatrix} | & | & | & | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 & \mathbf{v}_5 \\ | & | & | & | & | \end{pmatrix}.$$

- **a)** The rank of *A* is
- **b)** The maximum value of  $||A\mathbf{x}||$  subject to  $||\mathbf{x}|| = 1$  is
- c) Find orthonormal bases of the four fundamental subspaces of *A*.

**d)** What is the singular value decomposition of  $A^T$ ?

[Scratch work for problem 8]

#### Problem 9.

Let *A* be an  $m \times n$  matrix. Which of the following are equivalent to the statement "the columns of *A* are linearly independent?" Circle all that apply.

- (1) A has full column rank
- (2)  $A\mathbf{x} = \mathbf{b}$  has a unique solution for every  $\mathbf{b}$  in  $\mathbf{R}^m$
- (3)  $A\mathbf{x} = \mathbf{b}$  has a unique least-squares solution for every  $\mathbf{b}$  in  $\mathbf{R}^m$
- (4)  $A\mathbf{x} = \mathbf{0}$  has a unique solution
- (5) A has n pivots
- (6)  $N(A) = \{0\}$
- (7)  $m \ge n$
- (8)  $A^T A$  is invertible
- (9)  $AA^T$  is invertible
- (10)  $A^+A$  is the identity matrix
- (11) The row space of A is  $\mathbf{R}^n$

#### Problem 10.

Which of the following are subspaces of  $\mathbf{R}^4$ ? Circle all that apply

a) Span 
$$\begin{cases} \begin{pmatrix} 1\\0\\3\\2 \end{pmatrix}, \begin{pmatrix} -2\\7\\9\\13 \end{pmatrix}, \begin{pmatrix} 144\\0\\0\\1 \end{pmatrix} \end{pmatrix} \\$$
  
b)  $N \begin{pmatrix} 2 & -1 & 3\\0 & 0 & 4\\6 & -4 & 2\\-9 & 3 & 4 \end{pmatrix} \\$   
c)  $C \begin{pmatrix} 2 & -1 & 3\\0 & 0 & 4\\6 & -4 & 2\\-9 & 3 & 4 \end{pmatrix} \\$   
d)  $V = \begin{cases} \text{all vectors } \begin{pmatrix} x\\y\\z\\w \end{pmatrix} \text{ in } \mathbb{R}^4 \text{ such that } xy = zw \end{cases}$ 

[Scratch work for problem 10]

# Problem 11.

In the following, if the statement is true, prove it; if not, give a counterexample. **a)** If *A* is a  $3 \times 3$  matrix of rank 2, then  $A^2 \neq 0$ .

**b)** For any matrix *A*, we have  $N(A) = N(A^T A)$ .

c) If *Q* is an orthogonal  $n \times n$  matrix and  $\mathbf{x}, \mathbf{y}$  are vectors in  $\mathbf{R}^n$ , then  $(Q\mathbf{x}) \cdot (Q\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$  and  $||Q\mathbf{x}|| = ||\mathbf{x}||$ .

**d)** If *A* is a square matrix and  $\mathbf{v}_1, \mathbf{v}_2$  are eigenvectors of *A*, then  $\mathbf{v}_1 + \mathbf{v}_2$  is an eigenvector of *A*.

[Scratch work for problem 11]

# Problem 12.

Give examples of matrices with the following properties. If no such matrix exists, explain why. All matrices must have real entries.

a) A matrix having eigenvalue 0 with algebraic multiplicity 2 and geometric multiplicity 1.

**b)** A  $2 \times 2$  matrix that is neither diagonalizable nor invertible.

c) A 2 × 2 matrix A such that C(A) = N(A).

**d)** A  $3 \times 3$  matrix with no real eigenvalues.

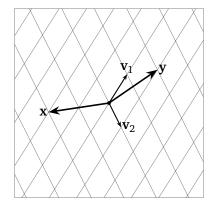
[Scratch work for problem 12]

# Problem 13.

Suppose that

$$A = X \begin{pmatrix} 1/2 & 0 \\ 0 & -1 \end{pmatrix} X^{-1},$$

where *X* has columns  $\mathbf{v}_1$  and  $\mathbf{v}_2$ . Given **x** and **y** in the picture below, draw the vectors  $A\mathbf{x}$  and  $A\mathbf{y}$ .



[Scratch work for problem 13]