Page 283

2. (a)
$$y = \frac{\begin{vmatrix} a & 1 \\ c & 0 \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}} = \frac{-c}{ad - bc}$$

(b) $y = \frac{\begin{vmatrix} a & 1 & c \\ d & 0 & f \\ g & 0 & i \end{vmatrix}}{\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}} = \frac{fg - di}{aei - afh - bdi + bfg + cdh - ceg}$

5. $\vec{x} = [1, 0, 0]^T$. Since Cramer's rule swaps the output into the relevant column, $x_1 = \frac{|A|}{|A|} = 1$. The other two swaps result in two identical columns, so we get a zero det. Therefore $x_2 = x_3 = \frac{0}{|A|} = 0$.

6. (a)
$$C = \begin{pmatrix} 3 & 0 & 0 \\ -2 & 1 & -7 \\ 0 & 0 & 3 \end{pmatrix}$$
, and det $A = 3$, so $A^{-1} = \frac{1}{3}C^T = \frac{1}{3}\begin{pmatrix} 3 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & -7 & 3 \end{pmatrix}$.
(b) $C = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{pmatrix}$, and det $A = 4$, so $A^{-1} = \frac{1}{4}C^T = \frac{1}{4}\begin{pmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{pmatrix}$.

11. If all entries in A and A^{-1} are integers, then so are the entries in the cofactor matrix C. Since $A^{-1} = \frac{1}{\det A}C^T$, if det A is ± 1 , all the entries in A^{-1} are integers. Example: $\begin{pmatrix} 3 & 5\\ 1 & 2 \end{pmatrix}$.

- 12. $|A||A^{-1}| = |I| = 1$, so $|A^{-1}| = \frac{1}{|A|}$. If all entries of both matrices are integers, then both determinants have to be integers. The only integers whose reciprocals are also integers are ± 1 .
- 14. (a) The cofactors of b, d, and e are zero, giving zeros in the lower triangle of the cofactor matrix, and thus in the upper triangle of t L^{-1} .
 - (b) The cofactors of each of the pairs of b, d, and e are equal, the cofactor matrix (and thus the inverse) are symmetric.
 - (c) $QC^T = \det QI = \pm I$. Multiplying both sides by Q, we get $C^T = \pm Q^T$. So $C = \pm Q$. The cofactor matrix is either Q itself or its negative.

P 298

2. $\det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & -4 \\ -2 & \lambda - 3 \end{vmatrix} = (\lambda - 1)(\lambda - 3) - 8 = \lambda^2 - 4\lambda - 5 = (\lambda - 5)(\lambda + 1).$ So the

eigenvalues are $\lambda = 5, -1$. These have eigenvectors corresponding the nullspaces of $\begin{pmatrix} 4 & -4 \\ 2 & 2 \end{pmatrix}$

and $\begin{pmatrix} 2 & -4 \\ 2 & -4 \end{pmatrix}$ resp. These have RREF's $\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$ resp. So E_5 has basis $[1, 1]^T$, and E_{-1} has basis $[2, -1]^T$.

Similarly, A + I has eigenvalues 6 and 0 corresponding to the same eigenvectors. A + I has the <u>same</u> eigenvectors as A. Its eigenvalues are <u>increased</u> by 1.

Note: For the rest of these, where the question asks for computation of eigenvectors and eigenvalues, I will merely give the answer. The procedure is similar to above.

- 3. A has eigenvalues 2 and -1 with eigenvectors $[1,1]^T$ and [2,-1] resp. A^{-1} has eigenvalues $\frac{1}{2}$ and -1 with eigenvectors $[1,1]^T$ and [2,-1]. A^{-1} resp. A^{-1} has the same eigenvectors as A. When A has eigenvalues λ_1 and λ_2 , its inverse has eigenvalues $\frac{1}{\lambda_1}$ and $\frac{1}{\lambda_2}$.
- 4. A: $\lambda = 2, -3$ with eigenvectors $[1, 1]^T$ and $[3, -2]^T$. A^2 : $\lambda = 4, 9$ with the same eigenvector. A^2 has the <u>same</u> eigenvectors as A. When A has eigenvalues λ_1 and λ_2 , A^2 has eigenvalues λ_1^2 and λ_2^2 . $\lambda_1^2 + \lambda_2^2 = 13 = tr(A^2)$.
- 5. The eigenvalues of both A and B are 1 and 3. The eigenvalues of A + B are 5 and 3. Eigenvalues of A + B are not equal to eigenvalues of A plus eigenvalues of B.
- 6. The only of A is 1. Same for B. The eigenvalues of AB are $2 \sqrt{3}$ and $2 + \sqrt{3}$. Same for BA.
 - (a) The eigenvalues of AB are not equal to the eigenvalues of A times the eigenvalues of B.
 - (b) The eigenvalues of AB are equal to the eigenvalues of BA.
- 12. E_0 has basis vector $[2, -1, 0]^T$, and E_1 has basis vectors $[1, 2, 0]^T$ and $[0, 0, 1]^T$. [1, 2, 1] is an eigenvector of P with no zero components.

13.
$$P = \vec{u}\vec{u}^T = \frac{1}{36} \begin{pmatrix} 1 & 1 & 3 & 5\\ 1 & 1 & 3 & 5\\ 3 & 3 & 9 & 15\\ 5 & 5 & 15 & 25 \end{pmatrix}.$$

- (a) $P\vec{u} = \vec{u}$ comes from $(\vec{u}\vec{u}^T)\vec{u} = \vec{u}(\vec{u}^T\vec{u})$. Then \vec{u} is an eigenvector with eigenvalue 1.
- (b) If $\vec{v} \perp \vec{u}$, then $P\vec{v} = (\vec{u}\vec{u}^T)\vec{v} = \vec{u}(\vec{u}^T\vec{v}) = \vec{0}$. Then $\lambda = 0$.
- (c) Note that $C(P) = \vec{u}$, so E_0 is exactly $C(P)^{\perp} = N(P^T)$. So we want a basis for the left nullspace of P. Computing this, we find eigenvectors $[5, 0, 0, -1]^T$, $[0, 5, 0, -1]^T$ and $[0, 0, 5, -3]^T$.
- 15. The first matrix has complex eigenvalues $-\frac{1}{2} \frac{\sqrt{3}}{2}i$ and $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$, as well as 1. The second has eigenvalue -1 as well as 1.
- 17. The quadratic formula gives the eigenvalues $\lambda = \left(a + d + \sqrt{(a d)^2 + 4bc}\right)/2$ and $\lambda = \frac{\left(a + d \sqrt{(a d)^2 + 4bc}\right)/2}{\lambda_1 = 3 \text{ and } \lambda_2 = 4$, then $\det(A \lambda I) = (3 \lambda)(4 \lambda)$.

- 19. (a) Yes. Rank is 2.
 - (b) Yes. $|B^T| = |B| = 0 \cdot 1 \cdot 2 = 0$. So $|B^T B| = 0$.
 - (c) No.
 - (d) Yes. These are $\frac{1}{\lambda^2+1}$ for each eigenvalue λ of B, so 1, $\frac{1}{2}$, and $\frac{1}{5}$.
- 21. The eigenvalue of A equal the eigenvalues of A^T . This is because $det(A \lambda I) = det(A^T \lambda I)$. That is true because $(A - \lambda I)^T = A^T - \lambda I^T = A^T - \lambda I$. So the determinants are the same.

Almost no matrices have the same eigenvectors as their transposes. For example, $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ has eigenvector $[1, 0]^T$, but A^T has eigenvector $[0, 1]^T$.

- 27. $\operatorname{Rank}(A) = 1$. It's eigenvalues are 0 (with an AM of 3), and 4 (AM = 1). $\operatorname{Rank}(C) = 2$. Its eigenvalues are 0 (AM = 2) and 2 (AM = 2).
- 32. (a) \vec{u} is a basis for the nullspace, and the vectors \vec{v} and \vec{w} are a basis for the column space.
 - (b) A particular solution for $A\vec{x} = \vec{v} + \vec{w}$ is $\vec{x} = \frac{1}{3}\vec{v} + \frac{1}{5}\vec{w}$.
 - (c) $A\vec{x} = \vec{u}$ has no solution. If it did then \vec{u} would be in the column space.