Page 283

2. (a)
$$
y = \frac{\begin{vmatrix} a & 1 \\ c & 0 \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}} = \frac{-c}{ad - bc}
$$

\n(b) $y = \frac{\begin{vmatrix} a & 1 & c \\ d & 0 & f \\ g & 0 & i \end{vmatrix}}{\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}} = \frac{fg - di}{aei - afh - bdi + bfg + cdh - ceg}$

5. $\vec{x} = [1, 0, 0]^T$. Since Cramer's rule swaps the output into the relevant column, $x_1 = \frac{|A|}{|A|} = 1$. The other two swaps result in two identical columns, so we get a zero det. Therefore $x_2 =$ $x_3 = \frac{0}{|A|} = 0.$

6. (a)
$$
C = \begin{pmatrix} 3 & 0 & 0 \\ -2 & 1 & -7 \\ 0 & 0 & 3 \end{pmatrix}
$$
, and det $A = 3$, so $A^{-1} = \frac{1}{3}C^{T} = \frac{1}{3} \begin{pmatrix} 3 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & -7 & 3 \end{pmatrix}$.
\n(b) $C = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{pmatrix}$, and det $A = 4$, so $A^{-1} = \frac{1}{4}C^{T} = \frac{1}{4} \begin{pmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{pmatrix}$.

11. If all entries in A and A^{-1} are integers, then so are the entries in the cofactor matrix C. Since $A^{-1} = \frac{1}{\det A} C^T$, if $\det A$ is ± 1 , all the entries in A^{-1} are integers. Example: $\begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}$.

- 12. $|A||A^{-1}| = |I| = 1$, so $|A^{-1}| = \frac{1}{|A|}$ $\frac{1}{|A|}$. If all entries of both matrices are integers, then both determinants have to be integers. The only integers whose reciprocals are also integers are ±1.
- 14. (a) The cofactors of b, d, and e are zero, giving zeros in the lower triangle of the cofactor matrix, and thus in the upper triangle of t L^{-1} .
	- (b) The cofactors of each of the pairs of b, d , and e are equal, the cofactor matrix (and thus the inverse) are symmetric.
	- (c) $QC^T = \det QI = \pm I$. Multiplying both sides by Q, we get $C^T = \pm Q^T$. So $C = \pm Q$. The cofactor matrix is either Q itself or its negative.

P 298

2. det($\lambda I - A$) = $\lambda - 1$ -4 -2 $\lambda - 3$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array}$ $= (\lambda - 1)(\lambda - 3) - 8 = \lambda^2 - 4\lambda - 5 = (\lambda - 5)(\lambda + 1)$. So the

eigenvalues are $\lambda = 5, -1$. These have eigenvectors corresponding the nullspaces of $\begin{pmatrix} 4 & -4 \\ 2 & 2 \end{pmatrix}$

and $\begin{pmatrix} 2 & -4 \\ 2 & -4 \end{pmatrix}$ resp. These have RREF's $\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$ resp. So E_5 has basis $[1, 1]^T$, and E_{-1} has basis $[2, -1]^T$.

Similarly, $A + I$ has eigenvalues 6 and 0 corresponding to the same eigenvectors. $A + I$ has the same eigenvectors as A. Its eigenvalues are increased by 1.

Note: For the rest of these, where the question asks for computation of eigenvectors and eigenvalues, I will merely give the answer. The procedure is similar to above.

- 3. A has eigenvalues 2 and −1 with eigenvectors $[1, 1]^T$ and $[2, -1]$ resp. A^{-1} has eigenvalues $\frac{1}{2}$ A has eigenvalues 2 and -1 with eigenvectors [1, 1] and [2, -1] resp. A has eigenvalues $\frac{1}{2}$ and -1 with eigenvectors $[1, 1]^T$ and $[2, -1]$. A^{-1} resp. A^{-1} has the <u>same</u> eigenvectors as A. When A has eigenvalues λ_1 and λ_2 , its inverse has eigenvalues $\frac{1}{\lambda_1}$ and $\frac{1}{\lambda_2}$.
- 4. A: $\lambda = 2, -3$ with eigenvectors $[1, 1]^T$ and $[3, -2]^T$. A^2 : $\lambda = 4, 9$ with the same eigenvector. A^2 has the same eigenvectors as A. When A has eigenvalues λ_1 and λ_2 , A^2 has eigenvalues λ_1^2 and λ_2^2 . $\lambda_1^2 + \lambda_2^2 = 13 = tr(A^2)$.
- 5. The eigenvalues of both A and B are 1 and 3. The eigenvalues of $A + B$ are 5 and 3. Eigenvalues of $A + B$ are not equal to eigenvalues of A plus eigenvalues of B.
- 6. The only of A is 1. Same for B. The eigenvalues of AB are 2 − $\sqrt{3}$ and $2 + \sqrt{3}$. Same for BA.
	- (a) The eigenvalues of AB are not equal to the eigenvalues of A times the eigenvalues of B.
	- (b) The eigenvalues of AB are equal to the eigenvalues of BA .
- 12. E_0 has basis vector $[2, -1, 0]^T$, and E_1 has basis vectors $[1, 2, 0]^T$ and $[0, 0, 1]^T$. $[1, 2, 1]$ is an eigenvector of P with no zero components.

13.
$$
P = \vec{u}\vec{u}^T = \frac{1}{36} \begin{pmatrix} 1 & 1 & 3 & 5 \\ 1 & 1 & 3 & 5 \\ 3 & 3 & 9 & 15 \\ 5 & 5 & 15 & 25 \end{pmatrix}
$$
.

- (a) $P\vec{u} = \vec{u}$ comes from $(\vec{u}\vec{u}^T)\vec{u} = \vec{u}(\vec{u}^T\vec{u})$. Then \vec{u} is an eigenvector with eigenvalue 1.
- (b) If $\vec{v} \perp \vec{u}$, then $P\vec{v} = (\vec{u}\vec{u}^T)\vec{v} = \vec{u}(\vec{u}^T\vec{v}) = \vec{0}$. Then $\lambda = 0$.
- (c) Note that $C(P) = \vec{u}$, so E_0 is exactly $C(P)^{\perp} = N(P^T)$. So we want a basis for the left nullspace of P. Computing this, we find eigenvectors $[5, 0, 0, -1]^T$, $[0, 5, 0, -1]^T$ and $[0, 0, 5, -3]^T$.
- 15. The first matrix has complex eigenvalues $-\frac{1}{2}$ $\sqrt{3}$ $\frac{\sqrt{3}}{2}i$ and $-\frac{1}{2}$ + $\sqrt{3}$ $\frac{\sqrt{3}}{2}i$, as well as 1. The second has eigenvalue −1 as well as 1.
- 17. The quadratic formula gives the eigenvalues $\lambda = \left(a + d + \sqrt{(a-d)^2 + 4bc}\right)/2$ and $\lambda =$ $(a+d-\sqrt{(a-d)^2+4bc})/2$. Their sum is $a+d$ (Note: this is the trace of A!). If A has $\lambda_1 = 3$ and $\lambda_2 = 4$, then $\det(A - \lambda I) = (3 - \lambda)(4 - \lambda)$.
- 19. (a) Yes. Rank is 2.
	- (b) Yes. $|B^T| = |B| = 0 \cdot 1 \cdot 2 = 0$. So $|B^T B| = 0$.
	- (c) No.
	- (d) Yes. These are $\frac{1}{\lambda^2+1}$ for each eigenvalue λ of B, so 1, $\frac{1}{2}$, and $\frac{1}{5}$.
- 21. The eigenvalue of A equal the eigenvalues of A^T . This is because $\det(A \lambda I) = \det(A^T \lambda I)$. That is true because $(A - \lambda I)^T = A^T - \lambda I^T = A^T - \lambda I$. So the determinants are the same.

Almost no matrices have the same eigenvectors as their transposes. For example, $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ has eigenvector $[1, 0]^T$, but A^T has eigenvector $[0, 1]^T$.

- 27. Rank $(A) = 1$. It's eigenvalues are 0 (with an AM of 3), and 4 (AM = 1). Rank $(C) = 2$. Its eigenvalues are 0 (AM = 2) and 2 (AM = 2).
- 32. (a) \vec{u} is a basis for the nullspace, and the vectors \vec{v} and \vec{w} are a basis for the column space.
	- (b) A particular solution for $A\vec{x} = \vec{v} + \vec{w}$ is $\vec{x} = \frac{1}{3}$ $\frac{1}{3}\vec{v} + \frac{1}{5}$ $rac{1}{5}\vec{w}$.
	- (c) $A\vec{x} = \vec{u}$ has no solution. If it did then \vec{u} would be in the column space.