
Homework #13

due Thursday, November 28

Exercises from Strang:

Problem Set 6.4 #7–9, 11, 13
Problem Set 6.5 #2, 4, 7, 9, 141, 16, 18, 19, 20, 24, 28
Problem Set 7.1 #1, 3
Problem Set 7.2 #1, 4, 7–9, 15, 18

Additional Problem:

1. For the two flags in #7.1.3, use the strategy below to compute their SVDs.
Recall that if u1, . . . ,ur are the left-singular vectors of A, v1, . . . ,vr are the right-

singular vectors of A, andσ1, . . . ,σr are the singular values of A, then the SVD gives
A as a sum of outer products:

A= σ1u1vT
1 + . . .+σrurv

T
r .

If the latter σ’s are very small, their corresponding outer products contribute very
little to A. So perhaps we can drop them without losing information. To do so, we
just drop the last columns of U and V , and make Σ a smaller square.

Reconstruct each of the flags using just the first singular vectors and values (i.e.
k = 1 below). By considering the relative sizes of the singular values for each,
explain your results as they compare to the original matrices. What does k = 2
give you? Explain.
SVD in Sage.

A=matrix(RDF,[[1,2,3],[4,5,6]])
U,S,V=A.SVD()

Test:

print(A)
print(U*S*V.T)

RDF stands for ‘Real Double Field’, one of the ways Sage represents real numbers
as floating point (specifically, double precision). Sage cannot do exact SVD (yet?).
Low Dimension Reconstruction. To reconstruct a matrix from just the first k singular
vectors and values:

k=2
print(U[:,:k]*S[:k,:k]*V[:,:k].T)

1Just the first part


