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7. The evalues are 3, 0, and −3, with normalized evectors the columns of
1

3

2 2 1
-1 2 -2
2 -1 -2

. So this

matrix diagonalizes S.

8. The evalues are 25 and 0, with normalized evectors the columns of
1

5

(
3 4
4 -3

)
. This diagonal-

izes S, as does the same matrix with columns swapped, and/or with the signs flipped on any
column. That gives eight matrices that diagonalize S.

9. (a) Any matrix

(
1 b
b 1

)
with b > 1 will have a negative eigenvalue.

(b) Determinant is the product of eigenvalues and also the product of pivots. Since there
are only two pivots and the determinant is negative, there must be a negative pivot.

(c) The sum of the two eigenvalues is the trace, which is 2. Two negative numbers can’t
add up to 2.

11. Every 3× 3 matrix has at least one real eigenvalue because:

• If it has three distinct eigenvalues, then either all are real, or two must be a conjugate
pair, so the third must be its own conjugate. Therefore the third must be real.

• If it only has one eigenvalue, then χA(t) = (t−λ)3 = t3− 3λt2 + 3λ2t+λ3. Since all the
coefficients have to be real, −3λ ∈ R, so λ ∈ R.

• If it has two distinct eigenvalues, then either both are real, or they are complex conjugates
of each other. Then χA(t) = (t− λ)2(t− λ̄) = t3− (λ̄+ 2λ)t2 + (2λλ̄+ λ2)t− ¯lambdaλ2.
Again, all coefficents have to be real. But λ̄+ λ is real, so λ̄+ 2λ is complex. Therefore
we conclude that this isn’t a possibility, so in this case both eigenvalues must be real.

13. S = 4 ·
(

1/
√

2

1/
√

2

)(
1/
√

2 1/
√

2
)
. B = 25 ·

(
3/5
4/5

)(
3/5 4/5

)
+ 0 ·

(
4/5
−3/5

)(
4/5 3/5

)
.
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2. Only S4 has two positive eigenvalues. S1 has a negative determinant, S2 has a11 < 0, and
S3 has det 0. One way to find an ~x with ~xTS1~x = 5x2 + 12xy + 7y2 < 0 is to complete
the square to get 5

(
x+ 6

5y
)2 − 1

5y
2. Then ~x = [−6, 5]T makes the first term 0, and we get

5x2 + 12xy + 7y2 = −5.

4. For S2, we get eigenvalues 0 and 10 with normalized eigenvectors 1√
10

[3,−1]T and 1√
10

[1, 3]T

resp. So we get f = 10
(
x+3y√

10

)2
= (x+ 3y)2.

7. The first two have independent columns, so ATA is positive definite for them. The last one
does not (it has rank 2), so ATA is not positive definite.
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9. There is only one factor in the sum of squares, so two of the eigenvalues are 0. Therefore

the rank is 1 and the determinant 0. We know that 4(x1 − x2 + 2x3)
2 = λ1

(
x1−x2+2x3√

6

)2
, so

4 = λ1
6 , or λ1 = 24.

4(x1 − x2 + 2x3)
2 = 4x21 − 8x1x2 + 4x22 + 16x1x3 − 16x2x3 + 16x23,

so S =

4 -4 8
-4 4 -8
8 -8 16

. The pivots are 4, 0, and 0.

14. The eigenvalues of S−1 are positive because they are reciprocals of the eigenvalues of S.

16. xTSx is not positive when x = (0, 1, 0) (there are other answers).

18. If S~x = λ~x, then ~xTS~x = ~xTλ~x = λ|~x|2. Since an eigenvector cannot be ~0, its length must
be positive, so if λ > 0, this number is positive.

19. All the cross terms are 0 because the eigenvectors are orthogonal.

20. (a) Every positive definite matrix has non-zero eigenvalues, so the determinant is non-zero
(it’s their product).

(b) All other projection matrices have determinant 0.

(c) All the eigenvalues are positive, and the matrix is symmetric.

(d) A =

(
-1 1
1 -2

)
has determinant 1, but its first pivot is negative, so isn’t positive definite.

24. S =

(
1 1

2
1
2 1

)
=

1√
2

(
1 1
1 -1

)(
3
2 0
0 1

2

)
1√
2

(
1 1
1 -1

)
. The ellipse has axes along the lines y = x

and y = −x with lengths
√

2 and
√

2
3 resp.:

√
2

√
2
3

28. (a) 2× 5 = 10

(b) 2 and 5
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(c)

(
cos θ
sin θ

)
and

(
− sin θ
cos θ

)
.

(d) Because it is QΛQT for orthogonal Q and diagonal Λ.
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1. A is rank 1 andB is rank 2. A =


1
2
3
4

(1 2 3 4
)
. B =


1
2
3
4

(1 1 1 1
)
+


1
1
1
1

(1 2 3 4
)
.

3. A =

1
2
1

(1 1 1 1
)

+

1
0
1

(0 1 0 0
)
, and B =

(
1
1

)(
1 1 1

)
+

(
1
2

)(
0 1 1

)
.
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1. • The eigenvalues of

(
0 4
0 0

)
are both 0. ATA =

(
0 0
0 16

)
, which has eigenvalues 16 and

0. The correponding eigenvectors are [0, 1]T and [1, 0]T respectively. So the singular

values of A are σ1 = 4 and σ2 = 0, and ~v1 = [0, 1]T and ~v2 = [1, 0]T . AAT =

(
16 0
0 0

)
,

~u1 = [1, 0]T and ~u2 = [0, 1]T . Indeed,

(
0 4
0 0

)
=

(
1 0
0 1

)(
4 0
0 0

)(
0 1
1 0

)
.

• The eigenvalues of

(
0 4
1 0

)
are ±2. ATA =

(
1 0
0 16

)
, which has eigenvalues 16 and

1. The correponding eigenvectors are [0, 1]T and [1, 0]T respectively. So the singular

values of A are σ1 = 4 and σ2 = 1, and ~v1 = [0, 1]T and ~v2 = [1, 0]T . AAT =

(
16 0
0 1

)
,

~u1 = [1, 0]T and ~u2 = [0, 1]T . Indeed,

(
0 4
1 0

)
=

(
1 0
0 1

)(
4 0
0 1

)(
0 1
1 0

)
.

4. ATA =

 1 1 0
1 2 1
0 1 1

, and AAT =

(
2 1
1 2

)
. These have eigenvalues 3 and 1 (and 0 in the

case of ATA). The ~vi are the corresponding eigenvectors of ATA (in order): ~v1 = 1√
6
[1, 2, 1]T ,

~v2 = 1√
2
[1, 0,−1]T , and ~v3 = 1√

3
[1,−1, 1]T . Similarly ~u1 = 1√

2
[1, 1]T , and ~u2 = 1√

2
[1,−1]T .

We get U =

(
1 1
1 −1

)
, Σ =

( √
3 0 0
0 1 0

)
, and V =


1√
6

1√
2

1√
3

2√
6

0 − 1√
3

1√
6
− 1√

2
1√
3

. Indeed,

AV = ΣU , so the signs are fine.

7. If ~v is an eigenvector of ATA, then A~v is an eigenvector of AAT .
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8. The eigenvalues of ATA are 50 and 0, with corresponding eigenvectors ~v1 = 1√
5
[1, 2]T , and

~v2 = 1√
5
[−2, 1]T . ~u1 = 1

5
√
2
A~v1 = 1√

10
[1, 3]T . AAT 1√

10
[1, 3]T = 1√

10
[5, 15] = 3 · 1√

10
[1, 3]T ,

so ~u1 is indeed an eigenvector of AAT . Lastly, ~u2 is a unit vector orthogonal to ~u1, so
~u2 = 1√

10
[−3, 1]T .

9. C(A) = span(~u1), N(AT ) = span(~u2), C(AT ) = span(~v1), N(A) = span(~v2).

15. 12 · 1

3

2
2
1

 1

2
[1, 1, 1, 1] =

2 2 2 2
2 2 2 2
1 1 1 1

. Its only singular value is σ1 = 12.

18. If A = QR and R = UΣV T is the SVD of R, then A = (QU)ΣV T is the SVD of A. So only
U changes.

Extra Problem

ForA, U ≈

−0.48 0.52 −0.71
−0.73 0.68 0
−0.48 −0.52 0.71

, Σ ≈

5.4 0 0 0
0 0.91 0 0
0 0 0 0

, and V ≈


−0.45 0.36 0.82 0
−0.63 −0.78 0 0
−0.45 0.36 −0.41 −0.71
−0.45 0.36 −0.41 0.71

.

When reconstructing using k = 1, we get1.17 1.63 1.17 1.17
1.78 2.48 1.78 1.78
1.17 1.63 1.17 1.17


We can see that the structure is maintained, with larger values along the cross. This makes sense,
because around 5.4

5.4+0.91 ≈
6
7 of the information is in the first outer product.

For B, U ≈
(
−0.57 −0.82
−0.82 0.57

)
, Σ ≈

(
5.28 0 0

0 0.27 0

)
, V ≈

−0.26 −0.96 0
−0.68 0.19 −0.71
−0.68 0.19 0.71

. With k = 1,

we get (
0.79 2.04 2.04
1.15 2.97 2.97

)
which is awfuly close to the original. We expect this, because about 95% of the information is in
the first outer product.

With k = 2, we get the original matrices back (with tiny errors due to floating point). This makes
sense, because the matrices are rank 2.
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