Page 345

7. The evalues are 3, 0, and -3 , with normalized evectors the columns of $\frac{1}{3}$ $\sqrt{ }$ $\sqrt{ }$ 2 2 1 -1 2 -2 2 -1 -2 \setminus . So this matrix diagonalizes S.

- 8. The evalues are 25 and 0, with normalized evectors the columns of $\frac{1}{5}$ $\begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix}$. This diagonalizes S , as does the same matrix with columns swapped, and/or with the signs flipped on any column. That gives eight matrices that diagonalize S.
- 9. (a) Any matrix $\begin{pmatrix} 1 & b \\ b & 1 \end{pmatrix}$ b 1 with $b > 1$ will have a negative eigenvalue.
	- (b) Determinant is the product of eigenvalues and also the product of pivots. Since there are only two pivots and the determinant is negative, there must be a negative pivot.
	- (c) The sum of the two eigenvalues is the trace, which is 2. Two negative numbers can't add up to 2.
- 11. Every 3×3 matrix has at least one real eigenvalue because:
	- If it has three distinct eigenvalues, then either all are real, or two must be a conjugate pair, so the third must be its own conjugate. Therefore the third must be real.
	- If it only has one eigenvalue, then $\chi_A(t) = (t \lambda)^3 = t^3 3\lambda t^2 + 3\lambda^2 t + \lambda^3$. Since all the coefficients have to be real, $-3\lambda \in \mathbb{R}$, so $\lambda \in \mathbb{R}$.
	- If it has two distinct eigenvalues, then either both are real, or they are complex conjugates of each other. Then $\chi_A(t) = (t - \lambda)^2 (t - \bar{\lambda}) = t^3 - (\bar{\lambda} + 2\lambda)t^2 + (2\lambda\bar{\lambda} + \lambda^2)t - \ell a m \bar{b} da \lambda^2$. Again, all coefficents have to be real. But $\lambda + \lambda$ is real, so $\lambda + 2\lambda$ is complex. Therefore we conclude that this isn't a possibility, so in this case both eigenvalues must be real.

13.
$$
S = 4 \cdot {1/\sqrt{2} \choose 1/\sqrt{2}} (1/\sqrt{2} \quad 1/\sqrt{2}).
$$
 $B = 25 \cdot {3/5 \choose 4/5} (3/5 \quad 4/5) + 0 \cdot {4/5 \choose -3/5} (4/5 \quad 3/5).$

Page 358

- 2. Only S_4 has two positive eigenvalues. S_1 has a negative determinant, S_2 has $a_{11} < 0$, and S_3 has det 0. One way to find an \vec{x} with $\vec{x}^T S_1 \vec{x} = 5x^2 + 12xy + 7y^2 < 0$ is to complete the square to get $5(x + \frac{6}{5})$ $\frac{6}{5}y)^2 - \frac{1}{5}$ $\frac{1}{5}y^2$. Then $\vec{x} = [-6, 5]^T$ makes the first term 0, and we get $5x^2 + 12xy + 7y^2 = -5.$
- 4. For S_2 , we get eigenvalues 0 and 10 with normalized eigenvectors $\frac{1}{\sqrt{10}}[3, -1]^T$ and $\frac{1}{\sqrt{10}}[1, 3]^T$ resp. So we get $f = 10 \left(\frac{x+3y}{\sqrt{10}}\right)^2 = (x+3y)^2$.
- 7. The first two have independent columns, so A^TA is positive definite for them. The last one does not (it has rank 2), so A^TA is not positive definite.

9. There is only one factor in the sum of squares, so two of the eigenvalues are 0. Therefore the rank is 1 and the determinant 0. We know that $4(x_1 - x_2 + 2x_3)^2 = \lambda_1 \left(\frac{x_1 - x_2 + 2x_3}{\sqrt{6}} \right)$ $\big)^2$, so $4=\frac{\lambda_1}{6}$, or $\lambda_1=24$.

$$
4(x_1 - x_2 + 2x_3)^2 = 4x_1^2 - 8x_1x_2 + 4x_2^2 + 16x_1x_3 - 16x_2x_3 + 16x_3^2,
$$

so
$$
S = \begin{pmatrix} 4 & -4 & 8 \\ -4 & 4 & -8 \\ 8 & -8 & 16 \end{pmatrix}
$$
. The pivots are 4, 0, and 0.

- 14. The eigenvalues of S^{-1} are positive because they are reciprocals of the eigenvalues of S.
- 16. $x^T S x$ is not positive when $x = (0, 1, 0)$ (there are other answers).
- 18. If $S\vec{x} = \lambda \vec{x}$, then $\vec{x}^T S \vec{x} = \vec{x}^T \lambda \vec{x} = \lambda |\vec{x}|^2$. Since an eigenvector cannot be $\vec{0}$, its length must be positive, so if $\lambda > 0$, this number is positive.
- 19. All the cross terms are 0 because the eigenvectors are orthogonal.
- 20. (a) Every positive definite matrix has non-zero eigenvalues, so the determinant is non-zero (it's their product).
	- (b) All other projection matrices have determinant 0.
	- (c) All the eigenvalues are positive, and the matrix is symmetric.
	- (d) $A = \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix}$ has determinant 1, but its first pivot is negative, so isn't positive definite.

24. $S = \begin{pmatrix} 1 & \frac{1}{2} \\ 1 & 1 \end{pmatrix}$ $\frac{1}{1}$ $\frac{2}{1}$ $rac{1}{2}$ 1 $\Big) = \frac{1}{\sqrt{2}}$ 2 $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \frac{3}{2} \\ 0 \end{pmatrix}$ $rac{3}{2}$ 0 $\bar{0}$ $\frac{1}{2}$ 2 $\frac{1}{2}$ 2 $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. The ellipse has axes along the lines $y = x$ and $y = -x$ with lengths $\sqrt{2}$ and $\sqrt{\frac{2}{3}}$ $\frac{2}{3}$ resp.:

(b) 2 and 5

(c)
$$
\begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}
$$
 and $\begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix}$.

(d) Because it is $Q\Lambda Q^T$ for orthogonal Q and diagonal Λ .

Page 370

1. A is rank 1 and B is rank 2.
$$
A = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} (1 \ 2 \ 3 \ 4). B = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} (1 \ 1 \ 1 \ 1) + \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} (1 \ 2 \ 3 \ 4)
$$

(1) (1) (1)

.

3.
$$
A = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} (1 \ 1 \ 1 \ 1) + \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} (0 \ 1 \ 0 \ 0), \text{ and } B = \begin{pmatrix} 1 \\ 1 \end{pmatrix} (1 \ 1 \ 1) + \begin{pmatrix} 1 \\ 2 \end{pmatrix} (0 \ 1 \ 1).
$$

Page 379

- 1. The eigenvalues of $\begin{pmatrix} 0 & 4 \\ 0 & 0 \end{pmatrix}$ are both 0. $A^T A = \begin{pmatrix} 0 & 0 \\ 0 & 16 \end{pmatrix}$, which has eigenvalues 16 and 0. The correponding eigenvectors are $[0, 1]^T$ and $[1, 0]^T$ respectively. So the singular values of A are $\sigma_1 = 4$ and $\sigma_2 = 0$, and $\vec{v}_1 = [0, 1]^T$ and $\vec{v}_2 = [1, 0]^T$. $AA^T = \begin{pmatrix} 16 & 0 \\ 0 & 0 \end{pmatrix}$, $\vec{u}_1 = [1, 0]^T \text{ and } \vec{u}_2 = [0, 1]^T. \text{ Indeed, } \begin{pmatrix} 0 & 4 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$
	- The eigenvalues of $\begin{pmatrix} 0 & 4 \\ 1 & 0 \end{pmatrix}$ are ± 2 . $A^T A = \begin{pmatrix} 1 & 0 \\ 0 & 16 \end{pmatrix}$, which has eigenvalues 16 and 1. The correponding eigenvectors are $[0, 1]^T$ and $[1, 0]^T$ respectively. So the singular values of A are $\sigma_1 = 4$ and $\sigma_2 = 1$, and $\vec{v}_1 = [0, 1]^T$ and $\vec{v}_2 = [1, 0]^T$. $AA^T = \begin{pmatrix} 16 & 0 \\ 0 & 1 \end{pmatrix}$, $\vec{u}_1 = [1, 0]^T \text{ and } \vec{u}_2 = [0, 1]^T. \text{ Indeed, } \begin{pmatrix} 0 & 4 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$
- 4. $A^T A =$ $\sqrt{ }$ $\overline{1}$ 1 1 0 1 2 1 0 1 1 \setminus , and $AA^T = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$. These have eigenvalues 3 and 1 (and 0 in the case of $A^T A$). The \vec{v}_i are the corresponding eigenvectors of $A^T A$ (in order): $\vec{v}_1 = \frac{1}{\sqrt{2}}$ $\frac{1}{6}[1, 2, 1]^T$, $\vec{v}_2 = \frac{1}{\sqrt{2}}$ $\overline{z}[1,0,-1]^T$, and $\vec{v}_3 = \frac{1}{\sqrt{2}}$ $\overline{a}_{\overline{3}}[1, -1, 1]^T$. Similarly $\vec{u}_1 = \frac{1}{\sqrt{2}}$ $\bar{z}[1,1]^T$, and $\vec{u}_2 = \frac{1}{\sqrt{2}}$ $\frac{1}{2}[1,-1]^T$. We get $U = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ 1 −1 $\bigg), \ \Sigma = \left(\begin{array}{rr} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{array} \right), \text{ and } V =$ $\sqrt{ }$ $\left\vert \right\vert$ $\frac{1}{\sqrt{2}}$ $\overline{6}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{2}$ $\frac{1}{\sqrt{2}}$ 3 $\frac{2}{7}$ $\frac{1}{6}$ 0 $-\frac{1}{\sqrt{2}}$ 3 $\frac{1}{\sqrt{2}}$ $\frac{1}{6}$ $-\frac{1}{\sqrt{2}}$ $\frac{1}{2}$ $\frac{1}{\sqrt{2}}$ 3 \setminus . Indeed, $AV = \Sigma U$, so the signs are fine.
- 7. If \vec{v} is an eigenvector of A^TA , then $A\vec{v}$ is an eigenvector of AA^T .

8. The eigenvalues of $A^T A$ are 50 and 0, with corresponding eigenvectors $\vec{v}_1 = \frac{1}{\sqrt{2}}$ $\frac{1}{5}[1,2]^T$, and $\vec{v}_2 = \frac{1}{\sqrt{2}}$ $\overline{5}[-2,1]^T$. $\vec{u}_1 = \frac{1}{5\sqrt{3}}$ $\frac{1}{5\sqrt{2}}A\vec{v}_1 = \frac{1}{\sqrt{10}}[1,3]^T$. $AA^T \frac{1}{\sqrt{10}}[1,3]^T = \frac{1}{\sqrt{10}}[5,15] = 3 \cdot \frac{1}{\sqrt{10}}[1,3]^T$, so \vec{u}_1 is indeed an eigenvector of AA^T . Lastly, \vec{u}_2 is a unit vector orthogonal to \vec{u}_1 , so $\vec{u}_2 = \frac{1}{\sqrt{10}}[-3, 1]^T.$

9.
$$
C(A) = \text{span}(\vec{u}_1), N(A^T) = \text{span}(\vec{u}_2), C(A^T) = \text{span}(\vec{v}_1), N(A) = \text{span}(\vec{v}_2).
$$

15.
$$
12 \cdot \frac{1}{3} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \frac{1}{2} [1, 1, 1, 1] = \begin{pmatrix} 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 \end{pmatrix}
$$
. Its only singular value is $\sigma_1 = 12$.

18. If $A = QR$ and $R = U\Sigma V^T$ is the SVD of R, then $A = (QU)\Sigma V^T$ is the SVD of A. So only U changes.

Extra Problem

For
$$
A, U \approx \begin{pmatrix} -0.48 & 0.52 & -0.71 \\ -0.73 & 0.68 & 0 \\ -0.48 & -0.52 & 0.71 \end{pmatrix}, \Sigma \approx \begin{pmatrix} 5.4 & 0 & 0 & 0 \\ 0 & 0.91 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
$$
, and $V \approx \begin{pmatrix} -0.45 & 0.36 & 0.82 & 0 \\ -0.63 & -0.78 & 0 & 0 \\ -0.45 & 0.36 & -0.41 & -0.71 \\ -0.45 & 0.36 & -0.41 & 0.71 \end{pmatrix}$.

When reconstructing using $k = 1$, we get

$$
\begin{pmatrix} 1.17 & 1.63 & 1.17 & 1.17 \\ 1.78 & 2.48 & 1.78 & 1.78 \\ 1.17 & 1.63 & 1.17 & 1.17 \end{pmatrix}
$$

We can see that the structure is maintained, with larger values along the cross. This makes sense, because around $\frac{5.4}{5.4+0.91} \approx \frac{6}{7}$ $\frac{6}{7}$ of the information is in the first outer product.

For
$$
B
$$
, $U \approx \begin{pmatrix} -0.57 & -0.82 \\ -0.82 & 0.57 \end{pmatrix}$, $\Sigma \approx \begin{pmatrix} 5.28 & 0 & 0 \\ 0 & 0.27 & 0 \end{pmatrix}$, $V \approx \begin{pmatrix} -0.26 & -0.96 & 0 \\ -0.68 & 0.19 & -0.71 \\ -0.68 & 0.19 & 0.71 \end{pmatrix}$. With $k = 1$,
we get
$$
\begin{pmatrix} 0.79 & 2.04 & 2.04 \\ 1.15 & 2.97 & 2.97 \end{pmatrix}
$$

which is awfuly close to the original. We expect this, because about 95% of the information is in the first outer product.

With $k = 2$, we get the original matrices back (with tiny errors due to floating point). This makes sense, because the matrices are rank 2.