Page 8

2.

The three vectors lie in a plane because $-\vec{u} - \vec{v} = \vec{w}$.

6. Every combination of $\vec{v} = (1, -2, 1)$ and $\vec{w} = (0, 1, -1)$ has components that add to 0.

 $3\vec{v} + 9\vec{w} = (3, 3, -6)$

 $(3, 3, 6)$ is impossible because its components don't add up to 0.

7. Let $\vec{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ 1 and $\vec{w} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 1 . Note that $0\vec{v} + 0\vec{w}$ is the zero vector, so can't be seen as an arrow on the diagram. The other eight combinations are seen below:

8. Let the other diagonal be \vec{x} (see diagram below).

- 9. Shifting $(1, 1)$ to the origin means subtracting it from all other points. So the points become $(0,0), (3,1),$ and $(0,2)$. Let $\vec{v} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ 1 and $\vec{w} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$ 2 . Then $\vec{v} + \vec{w} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ 3 $\Big]$. So (adding $(1, 1)$ back) the fourth point is $(4, 4)$
	- Similarly with (4, 2). Let $\vec{v} = \begin{bmatrix} -3 \\ -1 \end{bmatrix}$ $^{-1}$ and $\vec{w} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ 1 . Then $\vec{v} + \vec{w} = \begin{bmatrix} -6 \\ 0 \end{bmatrix}$ 0 . So (adding $(4, 2)$ back), the fourth point is $(-2, 2)$.
	- Lastly with (1,3). Let $\vec{v} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ $\frac{-2}{\cdot}$ and $\vec{w} = \begin{bmatrix} 3 \end{bmatrix}$ −1 . Then $\vec{v} + \vec{w} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ -3 . So (adding $(1,3)$) back), the fourth point is $(4, 0)$.

(The question only asks for two of the sketches above.)

- 12. It is the $x y$ plane.
- 13. (a) $V = \vec{0}$. (b) $\vec{0} - \vec{v} = -\vec{v}$. If \vec{v} is 2 : 00, then $-\vec{v}$ is 8 : 00.

(c) $\theta = 30^{\circ}$, so $\vec{v} = ($ $\sqrt{3}$ $\frac{\sqrt{3}}{2},\frac{1}{2}$ $(\frac{1}{2})$.

- 28. $\vec{v} = [3, 5, 7]^T$, $\vec{w} = [1, 0, -1]^T$ $v_1 + w_1 = 4$; $v_2 + w_2 = 5$; $v_3 + w_3 = 6$; $v_1 w_1 = 2$; $v_2 w_2 = 5$, $v_3 - w_3 = 8$. This is a question with 6 unknown numbers...
- 31. $2c-d=1, -c+2d-e=0, -d+2e=0$. By manual elimination, we can see that no solution exists. We will see a better way of solving this later.

Page 20

- 4. These are all -1 .
- 5. Unit vector in the direction of \vec{u}_1 is $[1/\sqrt{10}, 3/\sqrt{10}]$. Unit vector in the direction of \vec{w}_1 is [2/3, 1/3, 2/3]. Unit vector perpendicular to \vec{u}_1 is $[1/\sqrt{10}, -3/\sqrt{10}]$ (or the negative of this). Unit vector perpendicular to $\vec{w_1}$ is $[1/\sqrt{2}, 0, -1/\sqrt{2}]$ (or the negative of this). Also $[1/\sqrt{5}, -2/\sqrt{5}, 0]$, the negative of this, or any linear combination of these normalized to length 1.
- 16. The length of this vector is 3. A unit vector in the same direction is $[1/3, \ldots, 1/3]$. A unit vector perpendicular to it is $[0, 1/\sqrt{8}, -1/\sqrt{8}, 1/\sqrt{8}, -1/\sqrt{8}, 1/\sqrt{8}, -1/\sqrt{8}, 1/\sqrt{8}, -1/\sqrt{8}]$. There are many others.
- 18. $|\vec{v}|^2 = 4^2 + 2^2 = 20$, $|\vec{w}|^2 = (-1)^2 + 2^2 = 5$. $|\vec{v} + \vec{w}| = |(-3, 4)| = (-3)^2 + 4^2 = 25$. So $|\vec{v}|^2 + |\vec{w}|^2 = |\vec{v} + \vec{w}|^2.$
- 19. Rule 2 says $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{w} + \vec{u} \cdot \vec{w}$ (this is the distributive property for dot products).

Let $\vec{u} = \vec{v} + \vec{w}$. Then subbing into the above:

$$
(\vec{v} + \vec{w}) \cdot (\vec{v} + \vec{w}) = (\vec{v} + \vec{w}) \cdot \vec{v} + (\vec{v} + \vec{w}) \cdot \vec{w}
$$

$$
= \vec{v} \cdot \vec{v} + \vec{w} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{w}
$$

$$
= ||\vec{v}||^2 + 2\vec{v} \cdot \vec{w} + ||\vec{w}||^2
$$

The left hand of the first equation is $||\vec{v} + \vec{w}||^2$, so we're done.

- 22. **a.** $v_1^2 w_1^2 + 2v_1 w_1 v_2 w_2 + v_2^2 w_2^2 \le v_1^2 w_1^2 + v_1^2 w_2^2 + v_2^2 w_1^2 + v_2^2 w_2^2$
	- b. The first and last term on each side cancel out, so we get

$$
2v_1w_1v_2w_2 \le v_1^2w_2^2 + v_2^2w_1^2.
$$

Subtracting the left hand side over gives us

$$
0 \le v_1^2 w_2^2 + v_2^2 w_1^2 - 2v_1 w_1 v_2 w_2 = (v_1 w_2 - v_2 w_1)^2.
$$

Note that working all this backwards gives us Schwartz.

29. $||\vec{v} - \vec{w}||^2 = ||\vec{v}||^2 - 2||\vec{v}|| ||\vec{w}|| \cos \theta + ||\vec{w}||^2$.

So max value of $||\vec{v} - \vec{w}||$ is when $\cos \theta = -1$ (vectors are anti-parallel), giving

$$
||\vec{v} - \vec{w}||^2 = 5^2 + 2 \cdot 5 \cdot 3 + 3^2 = 64
$$
, so $||\vec{v} - \vec{w}|| = 8$.

Min length is when $\cos \theta = 1$ (vectors are parallel), giving

$$
||\vec{v} - \vec{w}||^2 = 5^2 - 2 \cdot 5 \cdot 3 + 3^2 = 4
$$
, so $||\vec{v} - \vec{w}|| = 2$.

Min value of $\vec{v} \cdot \vec{w}$ is -15 (when the two vectors are anti-parallel). Max value is 15 (when the two vectors are parallel).

31. If $x + y + z = 0$, then $z = -x - y$, so

$$
\vec{v} = \begin{bmatrix} x \\ y \\ -x - y \end{bmatrix}, \text{ and } \vec{w} = \begin{bmatrix} -x - y \\ x \\ y \end{bmatrix}.
$$

So

$$
\vec{v} \cdot \vec{w} = -x^2 - xy + xy - xy - y^2 = -(x^2 + xy + y^2),
$$

and

$$
||\vec{v}|| = ||\vec{w}|| = \sqrt{x^2 + y^2 + (-x - y)^2} = \sqrt{2(x^2 + y^2 + xy)}.
$$

Therefore

$$
\frac{\vec{v} \cdot \vec{w}}{||\vec{v}|| ||\vec{w}||} = \frac{-(x^2 + xy + y^2)}{2(x^2 + y^2 + xy)} = -\frac{1}{2}.
$$

So the angle between any two such vectors is always $\cos^{-1}\left(-\frac{1}{2}\right)$ $(\frac{1}{2}) = 120^{\circ}.$

Additional Problem

$$
\vec{v}^T \vec{w} = 21.
$$

$$
\vec{v}\vec{w}^T = \begin{bmatrix} 3 & -5 & 7 \\ 6 & -10 & 14 \\ 12 & -20 & 28 \end{bmatrix}.
$$

 $\vec{w}\vec{v}^T = (\vec{v}\vec{w}^T)^T$, so the outer product is not commutative. Multiplying the other way gives the transpose.