Homework #2

due Tuesday, September 10

Exercises from Strang:

Problem Set 2.4 #1,2,5,6,26 Problem Set 2.7 #4 Problem Set 2.1 #9,10,15–20,33 Problem Set 2.2 #1,2,4,5,7,13,17

Additional Problems:

- 1. Three planes can fail to have an intersection point, even if no planes are parallel. Consider the two planes A: x + y + z = 0 and B: x 2y z = 1. Use the tool here https://technology.cpm.org/general/3dgraph/ to visualize these two planes, then answer the following questions:
 - (1) What is the shape of the intersection $A \cap B$ of the two?
 - (2) Use the equations of *A* and *B* to construct a third plane *C* whose intersection with the two is exactly the same as $A \cap B$. That is, $A \cap B \cap C = A \cap B$ (Hint: how can you create a singular system of three equations?)
 - (3) Find a fourth plane *D* such that $A \cap D$, and $B \cap D$ are both non-empty, but $A \cap B \cap D$ is empty. That is, *D* should intersect both *A* and *B*, but the three should never meet. (Hint: Construct a permanent breakdown!)

For both the last two parts, I strongly suggest you use the tool linked above to draw the planes and see your answers!