Page 66

30. (a)
$$
\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}
$$

\n(b) $\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$
\n(c) $EM = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix}$, $FEM = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$, $EFEM = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$, $EEFEM = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $FEEFEM = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
\n(d) $M^{-1} = FEEFE$, so $M = E^{-1}F^{-1}E^{-1}F^{-1} = ABAAB$.

Page 92

10.
$$
A^{-1} = \begin{pmatrix} 0 & 0 & 0 & 1/2 \\ 0 & 0 & 1/3 & 0 \\ 0 & 1/4 & 0 & 0 \\ 1/5 & 0 & 0 & 0 \end{pmatrix}, B^{-1} = \begin{pmatrix} 3 & -2 & 0 & 0 \\ -4 & 3 & 0 & 0 \\ 0 & 0 & 6 & -5 \\ 0 & 0 & -7 & 6 \end{pmatrix}
$$

11. (a) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$
(b) $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$

Page 118

8. You have n choices for where the 1 in the first row goes. That leaves $(n-1)$ choices for where the 1 in the second row goes, then $(n-2)$ choices for where the 1 goes in the third row, and so on. Altogether, there are $n!$ possibilities.

13. (a)
$$
\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}
$$

(b)
$$
\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}
$$

22. First matrix:
$$
P = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}
$$
, $L = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & -\frac{2}{3} & 1 \end{pmatrix}$, $U = \begin{pmatrix} 2 & 3 & 4 \\ 0 & -\frac{3}{2} & -1 \\ 0 & 0 & \frac{1}{3} \end{pmatrix}$.
Second matrix: $P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$, $L = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{1}{2} & 0 & 1 \end{pmatrix}$, $U = \begin{pmatrix} 2 & 4 & 1 \\ 0 & -1 & \frac{1}{2} \\ 0 & 0 & -\frac{1}{2} \end{pmatrix}$.

- 39. (a) All diagonal entries are 1, so for each i, $q_i^T q_i = 1$, but $||q_i||^2 = q_i^T q_i$.
	- (b) All non-diagonal entries are 0, so for each $i \neq j$, $q_i^T q_j = 0$.
	- (c) $\begin{pmatrix} \cos \theta & -\sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$ $\sin \theta \quad \cos \theta$. (There are three other possibilities)

Page 132

- 9. (a) $\begin{pmatrix} x \\ y \end{pmatrix}$ \hat{y} with x and y integers. (Note: this is a *lattice*, an important structure in other areas of math.)
	- (b) Two lines intersecting at the origin.
- 10. (a) Yes;
	- (b) No (doesn't contain the zero vector);
	- (c) No (not closed under addition);
	- (d) Yes;
	- (e) Yes;
	- (f) No (Not closed under scalar multiplication, e.g. by a negative scalar).
- 12. Many possibilities, like $v_1 = [0, 0, -2]^T$, and $v_2 = [4, 0, 0]^T$.
- 13. P₀ is given by $x + y 2z = 0$. Many answers. E.g. $v_1 = [1, 1, 1]$ and $v_2 = [2, 0, 1]$. Then $v_1 + v_2 = [3, 1, 2]$, and $3 + 1 - 2 \times 2 = 0$, as required.
- 16. Suppose P is a plane through $(0, 0, 0)$ and L is a line through $(0, 0, 0)$. The smallest vector space containing both P and L is either a point or a line (that is, it's either the zero vector space, or L itself).
- 20. (a) Only for multiples of $[1, 2, -1]^T$.
	- (b) Any vector with $b_1 + b_3 = 0$.
- 22. First system: all vectors in \mathbb{R}^3 ; Second system: all vectors for which $b_3 = 0$; Third system: all vectors for which $b_2 = b_3$.
- 23. If we add an extra column \vec{b} to a matrix A, then the column space gets larger unless $\vec{b} \in C(A)$. For example, if we add the column $[1, 1, 0]^T$ to the matrix $\sqrt{ }$ \mathcal{L} 1 0 0 1 0 0 \setminus , the column space doesn't get larger, but if we add the column $[0, 0, 1]^T$, it does. $A\vec{x} = \vec{c}$ is solvable exactly if the column space doesn't get larger because in that case, $\vec{c} \in C(A)$, which is exactly the condition necessary for the equation to have a solution.
- 24. For two square matrices, any non-singular matrix A and singular matrix B will do. Specifically, if B is the zero matrix, we're done.
- 27. (a) False. This set doesn't contain the zero vector, so can't be a subspace.
	- (b) True.
	- (c) True.
	- (d) False. For example, if $A = I$, then $C(A) = \mathbb{R}^n$, but $C(A I) = {\mathbb{\vec{0}}}$.
- 28. Many examples. Easiest for the first part: $\sqrt{ }$ \mathcal{L} 1 1 0 1 0 0 0 1 0 \setminus . For the second part, any rank 1 matrix will do. For example, a matrix all of whose columns are the same and are not all zeros.
- 32. $C(AB) \subseteq C(A)$, so by adding the columns of AB to the matrix A (to get [AAB]), we don't expand the column space. If (e.g.) $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, then $A^2 = 0$, so $C(A^2)$ is smaller than $C(A)$. An n by n matrix has $C(A) = \mathbb{R}^n$ exactly when A is an <u>invertible</u> matrix.

Page 142

- 1. (a) $\sqrt{ }$ \mathcal{L} 1 2 0 0 0 0 0 1 2 3 0 0 0 0 0 \setminus (also accept the row echelon form, $\sqrt{ }$ \mathcal{L} 1 2 2 4 6 0 0 1 2 3 0 0 0 0 0 \setminus). Free variables are x_2 , x_4 , and x_5 . (b) $\sqrt{ }$ \mathcal{L} 1 0 -1 0 1 1 0 0 0 \setminus (also accept the row echelon form, $\sqrt{ }$ \mathcal{L} 2 4 2 0 4 4 0 0 0 \setminus). Only x_3 is free.
- 12. $A = (1 -3 -1)$. The variables y and z are free. The special solutions are $[3,1,0]^T$ and $[1, 0, 1]^T$.

1. (a)
$$
\begin{pmatrix} 1 & 1 & 1 & 1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{pmatrix}
$$

\n(b)
$$
\begin{pmatrix} 1 & 0 & -1 & -2 \ 0 & 1 & 2 & 3 \ 0 & 0 & 0 & 0 \end{pmatrix}
$$

\n(c)
$$
\begin{pmatrix} 1 & -1 & 1 & -1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{pmatrix}
$$

31. Accept either RREF or REF:

(a)
$$
\begin{pmatrix} 4 & 4 & 4 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
$$
, or same with all 1's in the first row.
\n(b) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, or $\begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
\n(c) $\begin{pmatrix} 1 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ (RREF is the same.)

Extra Problem

A quadratic is $y = ax^2 + bx + c$. The system of equations is therefore:

$$
-7 = a + b + c
$$

$$
-16 = 4a + 2b + c
$$

$$
-33 = 9a + 3b + c
$$

Or

$$
\begin{pmatrix} 1 & 1 & 1 \ 4 & 2 & 1 \ 9 & 3 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -7 \\ -16 \\ 33 \end{pmatrix}.
$$

Gaussian elimination takes the augmented matrix

$$
\begin{pmatrix} 1 & 1 & 1 & | & -7 \\ 4 & 2 & 1 & | & -16 \\ 9 & 3 & 1 & | & -33 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & -7 \\ 0 & -2 & -3 & | & 12 \\ 0 & 0 & 1 & | & -6 \end{pmatrix}
$$

So by back-sub, we get $c = -6$, $b = 3$, $a = -4$. This can be checked by plugging in the x values.