Page 158

24. (a) $\sqrt{ }$ \vert 1 0 0 0 1 0 0 0 1 0 0 0 \setminus , or any matrix with full column rank, but not full row rank. (b) $\sqrt{ }$ \mathcal{L} 1 0 0 0 0 1 0 0 0 0 1 0 \setminus , or any matrix with full row rank, but not full column rank. (c) $\sqrt{ }$ \vert 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 \setminus , or any matrix with neither full row rank, nor free column rank. (d) $\sqrt{ }$ $\overline{1}$ 1 0 0 0 1 0 0 0 1 \setminus , or any invertible matrix 25. (a) $r < m$ (b) $r = m < n$

(d) $r = m = n$

(c) $r = n < m$

Page 175

- 2. Taking each vector to be the column of a matrix, then finding its RREF gives the first three columns as pivot columns. Hence a maximal linearly independent set is the first three vectors.
- 7. The v_i 's are linearly dep. if there is a set of non-zero c_1, c_2, c_3 that solve $c_1v_1+c_2v_2+c_3v_3=0$. By plugging in the expressions for each v_i in terms of the w_i 's, we get

$$
(c_2 + c_3)w_1 + (c_1 - c_3)w_2 - (c_1 + c_2)w_3 = 0.
$$

One set of solutions is $c_1 = c_3 = 1$, $c_2 = -1$. $[v_1v_2v_3] = [w_1w_2w_3]A$, where A is the singular matrix

$$
\begin{pmatrix} 0 & 1 & 1 \ 1 & 0 & -1 \ 1 & -1 & 0 \end{pmatrix}.
$$

8. We want to show that the v_i 's are independent. So write

$$
\vec{0} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + c_3 \vec{v}_3 \Leftrightarrow \vec{0} = c_1 \vec{w}_2 + c_1 \vec{w}_3 + c_2 \vec{w}_1 + c_2 \vec{w}_3 + c_3 \vec{w}_1 + c_3 \vec{w}_2
$$

$$
\Leftrightarrow \vec{0} = (c_2 + c_3)\vec{w}_1 + (c_1 + c_3)\vec{w}_2 + (c_1 + c_2)\vec{w}_3
$$

Since the \vec{w}_i 's are independent, this means that

$$
c_2 + c_3 = 0
$$

$$
c_1 + c_3 = 0
$$

$$
c_1 + c_2 = 0
$$

or $\sqrt{ }$ \mathcal{L} 0 1 1 1 0 1 1 1 0 \setminus $\overline{1}$ $\sqrt{ }$ \mathcal{L} c_1 $\overline{c_2}$ $\overline{c_3}$ \setminus $\Big\} =$ $\sqrt{ }$ \mathcal{L} 0 0 0 \setminus . By row-reducing, we see that the matrix has rank 3, so its

nullspace is just the zero vector. So the only solution is $c_1 = c_2 = c_3 = 0$. Therefore the v_i 's are independent.

- 12. The vector \vec{b} is in the subspace spanned by the columns of A when $A\vec{x} = \vec{b}$ has a solution. The vector \vec{c} is in the row space of A when $A^T \vec{y} = \vec{c}$ has a solution. It is *false* that if the zero vector is in the row space then the rows are dependent. In fact, the zero vector is always in the row space by definition of a space.
- 21. (a) The equation $A\vec{x} = \vec{0}$ has only the solution $\vec{x} = \vec{0}$ because A has full column rank, since its columns are independent, so $N(A) = \{ \vec{0} \}.$
	- (b) If \vec{b} is in \mathbb{R}^5 , then $A\vec{x} = \vec{b}$ is solvable because the basis vectors span \mathbb{R}^5 .
- 45. Let v_1, \ldots, v_α be a basis for V, and let w_1, \ldots, w_β be a basis for W. Then we know $\alpha + \beta > n$. Since any basis of \mathbb{R}^n has n vectors in it, the set $\{v_1, \ldots, v_\alpha, w_1, \ldots, w_\beta\}$ must be linearly dependent. Therefore there exists a set of scalars $c_1, \ldots, c_\alpha, d_1, \ldots, d_\beta$, not all zeros such that

$$
c_1v_1 + \ldots + c_\alpha v_\alpha + d_1w_1 + \ldots d_\beta w_\beta = \vec{0}.
$$

Therefore $c_1v_1 + \ldots + c_\alpha v_\alpha = -(d_1w_1 + \ldots d_\beta w_\beta)$ is a non-zero vector in $V \cap W$.

Page 190

- 3. Basis for $C(A)$: [1, 1, 0], [3, 4, 1].
	- Basis for $C(A^T)$: [0, 1, 2, 3, 4], [0, 1, 2, 4, 6]. (Or [0, 1, 2, 3, 4], [0, 0, 0, 1, 2].)
	- Basis for $N(A)$: [1, 0, 0, 0, 0], [0, -2, 1, 0, 0], [0, 2, 0, -2, 1]
	- Basis for $N(A^T)$ (after finding $RREF(A^T)$): [1, -1, 1].
- 4. When they exist, these are not usually unique.
	- (a) $\sqrt{ }$ \mathcal{L} 1 0 1 0 0 1 \setminus \cdot
	- (b) Impossible. This must be a 3×3 matrix, which means $dim(C(A)) + dim(N(A)) = 3$.
	- (c) 1 0 (I think this really must be the simplest possible example).
	- (d) $\begin{pmatrix} 9 & 3 \\ 3 & -1 \end{pmatrix}$
- (e) Impossible. Since $C(A)^{\perp} = N(A^T)$ and $C(A^T)^{\perp} = N(A)$, then if $C(A) = C(A^T)$, then $N(A) = N(A^T).$
- 11. (a) $r \leq m$ (always true), $r < n$ (since $r = dim(C(A)) < n$, since it is possible that there are no solutions).
	- (b) The condition is equivalent to $dim(N(A^T)) > 0$. Since $dim(N(A^T)) + dim(C(A)) = n$, and $dim(C(A)) < n$, this must be true.
- 18. The combination $r_3 2r_2 + r_1 = \vec{0}$. So multiples of $[1, -2, 1]$ are in $N(A^T)$. Similarly, since $c_3 - 2c_2 + c_1 = \vec{0}$, multiples of $[1, -2, 1]$ are also in $N(A)$.

19. (a) The row echelon form of
$$
\begin{pmatrix} 1 & 2 & b_1 \\ 3 & 4 & b_2 \\ 4 & 6 & b_3 \end{pmatrix}
$$
 is $\begin{pmatrix} 1 & 2 & b_1 \\ 0 & -2 & b_2 - 3b_1 \\ 0 & 0 & b_3 - b_2 - b_1 \end{pmatrix}$. So $N(A^T)$ has basis $[-1, -1, 1]^T$.
\n(b) The row echelon form of $\begin{pmatrix} 1 & 2 & b_1 \\ 2 & 3 & b_2 \\ 2 & 4 & b_3 \\ 2 & 5 & b_4 \end{pmatrix}$ is $\begin{pmatrix} 1 & 2 & b_1 \\ 0 & 1 & b_2 - b_1 \\ 0 & 0 & b_3 - 2b_2 + 2b_1 \\ 0 & 0 & b_4 - 3b_2 + 4b_1 \end{pmatrix}$. So a basis of $N(A^T)$ is $\{[2, -2, 1, 0], [4, -3, 0, 1]\}$.

- 24. $A^T \vec{y} = \vec{d}$ is solvable when $\vec{d} \in C(A^T)$, the row space. The solution is unique when the left nullspace contains only the zero vector.
- 25. (a) True. These are both the rank of the matrix.
	- (b) False. Left nullspace of A^T is the nullspace of A, which lives in a different dimension than the left nullspace of A for any non-square matrix.
	- (c) False. Row space and column space are the same for any invertible matrix.
	- (d) True. This is trivially true if $A^T = A$, and multiplying the right side by −1 doesn't change the space spanned by the columns.

Page 202

- 9. If $A^T A \vec{x} = \vec{0}$, then $A\vec{x} = \vec{0}$. Reason: $A\vec{x}$ is in the nullspace of A^T and also in the column space of A and those spaces are orthogonal complements.
- 10(a) The column space of a matrix is perpendicular to its left nullspace. However, since the matrix is symmetric, the left nullspace is exactly the nullspace, so the column space is perpendicular to the nullspace.
	- 14. The column spaces of A and B are planes in \mathbb{R}^3 . $[AB] =$ $\sqrt{ }$ \mathcal{L} 1 2 5 4 1 3 6 3 1 2 5 1 \setminus . The RREF of this

is
$$
\begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}
$$
. So $A\begin{pmatrix} 3 \\ 1 \end{pmatrix} = B\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ (the first column of *B*) is in both column spaces.

- 17. If S is the subspace of \mathbb{R}^3 containing only the zero vector, then $S^{\perp} = \mathbb{R}^3$. If S is spanned by $(1, 1, 1)$, then S^{\perp} is the plane spanned by $(1, -1, 0)$ and $(0, 1, -1)$. If S is spanned by $(1, 1, 1)$ and $(1, 1, -1)$, then S^{\perp} is spanned by $(1, -1, 0)$.
- 21. If S is spanned by $(1, 2, 2, 3)$ and $(1, 3, 3, 2)$, then S^{\perp} is spanned by $(0, -1, 1, 0)$ and $(-5, 1, 0, 1)$. This is the same as solving $A\vec{x} = \vec{0}$ for $A = \begin{pmatrix} 1 & 2 & 2 & 3 \\ 1 & 3 & 3 & 2 \end{pmatrix}$ (i.e. finding the nullspace of this matrix.)

Extra Problem

- 1. $Rank(A) = 6$.
- 2. Basis for $C(A)$: (column space):

- Basis for $N(A^T)$ (left nullspace): $(5 \t 0 \t -11 \t -6 \t -4 \t -4 \t -1)$
- Basis for $C(A^T)$ (row space):

• Basis for $N(A)$ (nullspace):

$$
\begin{pmatrix}\n(5 & -3 & 2 & 3 & 1 & 0 & 0 & 0 & 0 & 0 \\
(-2 & 0 & 2 & 0 & 0 & -1 & 2 & 1 & 0 & 0) \\
(3 & -3 & -1 & 1 & 0 & 2 & -2 & 0 & 1 & 0) \\
(2 & 3 & 2 & 2 & 0 & -1 & -1 & 0 & 0 & 1)\n\end{pmatrix}
$$
\n
$$
\text{3. RREF}([A|c]) = \begin{pmatrix}\n1 & 0 & 0 & 0 & -5 & 0 & 0 & 2 & -3 & -2 & 9 \\
0 & 1 & 0 & 0 & 3 & 0 & 0 & 0 & 3 & -3 & 1 \\
0 & 0 & 1 & 0 & -2 & 0 & 0 & 2 & 1 & -2 & 5 \\
0 & 0 & 0 & 1 & -3 & 0 & 0 & 0 & -1 & -2 & 6 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & -2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -2 & 2 & 1 & -3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\n\end{pmatrix}
$$
\n
$$
\text{3. RREF}([A|c]) = \begin{pmatrix}\n1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\n\end{pmatrix}
$$

By setting all the free variables to zero, we get $x_p = [9, 1, 5, 6, 0, 0, -3, 0, 0, 0]$.

- 4. x_p is a linear combination of basis vectors in $C(A^T)$ (the row space) and $N(A)$ (the nullspace).
- 5. In order to express x_p as a linear combination of basis vectors in $C(A^T)$ (the row space) and $N(A)$ (the nullspace), create a 10×11 matrix whose first six columns are the basis vectors for $C(A^T)$, the next four columns the basis vectors for $N(A)$, and the last column x_p . Then the last column of this matrix's RREF is the coefficients of x_p as a linear combination of these basis vectors. (Bonus points: The coefficient vector turns out to be $\frac{1}{193}$ (26620 13768 -35461 -11647 -13815 2005 -14067 35507 30730 12138).)