Page 203

- 24. The first column of A^{-1} is orthogonal to the space spanned by row 2 through n of A.
- 28. (a) Two planes in \mathbb{R}^3 cannot be orthogonal. In this case, the vector $[1, -1, 0]^T$ and its multiples form the intersection of the two planes.
 - (b) The orthogonal complement of a 2-D subspace of \mathbb{R}^5 is 3-D, but there are only two basis vectors given.
 - (c) The subspaces spanned by $[1,0]^T$ and $[1,1]^T$ only intersect at the origin, but aren't orthogonal.

29. The matrix $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 0 & 0 \\ 3 & 0 & 0 \end{pmatrix}$ has $\vec{v} = [1, 2, 3]^T$ in the column and row spaces. The matrix

 $\begin{pmatrix} 1 & 1 & -3 \\ 2 & 1 & -4 \\ 3 & 1 & -5 \end{pmatrix}$ has \vec{v} in the column and nullspace. But \vec{v} cannot be both in the column space

and the left nullspace, or in the row space and nullspace, since the intersections of both those pairs is $\vec{0}$.

Page 215

5. $P_1 = \frac{1}{9} \begin{pmatrix} 1 & -2 & -2 \\ -2 & 4 & 4 \\ 2 & 4 & 4 \end{pmatrix}$, and $P_2 = \frac{1}{9} \begin{pmatrix} 4 & 4 & -2 \\ 4 & 4 & -2 \\ 2 & -2 & 1 \end{pmatrix}$. Note that $P_1 P_2 = 0$. This makes sense, because

the vectors are orthogonal, so projecting onto one, then the other always gives the zero vector.

6.
$$\vec{p_1} = P_1 \vec{b} = \frac{1}{9} \begin{pmatrix} 1\\ 2\\ 2 \end{pmatrix}; \vec{p_2} = P_2 \vec{b} = \frac{1}{9} \begin{pmatrix} 4\\ 4\\ 2 \end{pmatrix}; \vec{p_3} = P_3 \vec{b} = \frac{1}{9} \begin{pmatrix} 4\\ -2\\ 4 \end{pmatrix}, p_1 + p_2 + p_3 = \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}$$

7. $P_3 = \frac{1}{9} \begin{pmatrix} 4 & -2 & 4\\ -2 & 1 & -2\\ 4 & -2 & 4 \end{pmatrix}$. The three do indeed add up to I .
11. (a) $\vec{p} = \begin{pmatrix} 2\\ 3\\ 0 \end{pmatrix}; \vec{e} = \begin{pmatrix} 0\\ 0\\ 4 \end{pmatrix}$.
(b) $\vec{p} = \begin{pmatrix} 4\\ 4\\ 6 \end{pmatrix}; \vec{e} = \begin{pmatrix} 0\\ 0\\ 0 \\ 0 \end{pmatrix}$.
12. $P_1 = \frac{1}{9} \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 0 \end{pmatrix}, P_2 = \frac{1}{9} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{pmatrix}$. $P_1 \vec{b} = \frac{1}{9} \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2\\ 3\\ 4 \end{pmatrix} = \begin{pmatrix} 2\\ 3\\ 0 \end{pmatrix}$. P_2^2 is indeed the

identity.

17. $(I - P)^2 = I - 2P + P^2 = I - 2P + P = I - P$. When P projects on the column space of A, I - P projects onto its left nullspace.

19. Two possible vectors are
$$\begin{pmatrix} 1\\-1\\1 \end{pmatrix}$$
 and $\begin{pmatrix} 0\\-2\\1 \end{pmatrix}$. Then $P = \frac{1}{6} \begin{pmatrix} 5 & 1 & 2\\1 & 5 & -2\\2 & -2 & 2 \end{pmatrix}$.

20. The vector $\vec{e} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ (the vector of coefficients) is perpendicular to the plane. So $Q = \frac{\vec{e}\vec{e}T}{\vec{e}^T\vec{e}} =$

$$\frac{1}{6} \begin{pmatrix} 1 & -1 & -2 \\ -1 & 1 & 2 \\ 2 & 2 & 4 \end{pmatrix}.$$
 So $P = I - Q = \frac{1}{6} \begin{pmatrix} 5 & 1 & 2 \\ 1 & 5 & -2 \\ 2 & -2 & 2 \end{pmatrix}$, as before.

- 24. The nullspace of A^T is <u>orthogonal</u> to the column space of C(A). So if $A^T \vec{b} = \vec{0}$, the projection of \vec{b} onto C(A) should be $\vec{p} = \vec{0}$. Indeed, $P\vec{b} = A(A^TA)^{-1}A^T\vec{b} = A(A^TA)^{-1}(A^T\vec{b}) = A(A^TA)^{-1}\vec{0} = \vec{0}$.
- 26. If an $m \times m$ matrix has rank m, then it is invertible. So if $A^2 = A$, then $A^{-1}A^2 = A^{-1}A \Rightarrow A = I$.
- 31. You would take the dot product of $\vec{b} \vec{p}$ with each of the \vec{a}_i 's. If all the dot products are zero, then \vec{p} is the orthogonal projection of \vec{b} onto the subspace spanned by the \vec{a}_i 's.

Page 232

28. If the columns of A are not independent, find the row echelon form of A to figure out the pivot columns. Remove all free columns from A to create a matrix B with the same column space, but with full row rank. Then $P = B(B^T B)^{-1}B^T$ is the projection onto C(B) = C(A).

Extra Problem

1. Create a matrix *B* that is *A* augmented by \vec{c} . Its RREF is $\begin{pmatrix} 1 & 0 & 2 & -1 & 0 \\ 0 & 1 & -3 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$. Since

the last row is not all zeros, \vec{c} cannot be written as a linear combination of the columns of A, so it's not in C(A).

2.
$$A^T A = \begin{pmatrix} 14 & 5 & 13 & 1 \\ 5 & 5 & -5 & 10 \\ 13 & -5 & 41 & -28 \\ 1 & 10 & -28 & 29 \end{pmatrix}$$
, and $A^T \vec{c} = [22, 12, 8, 14]^T$.

- 3. We saw in part 1 of the question that A has rank 2, so N(A) is two-dimensional. Since we know that $N(A^T A) = N(A)$, $N(A^T A) \neq {\vec{0}}$, so $A^T A \hat{x} = A^T \vec{c}$ does not have a unique solution.

 $[10/9, 58/45, 0, 0]^T = \frac{1}{45}[50, 58, 0, 0]^T$. The special solutions of are $\hat{s}_1 = [-2, 3, 1, 0]^T$ and $\hat{s}_2 = [1, -3, 0, 1]^T$, so the general solution of the normal equation is

$$\hat{x} = \frac{1}{45} \begin{pmatrix} 50\\58\\0\\0 \end{pmatrix} + c_1 \begin{pmatrix} 2\\3\\1\\0 \end{pmatrix} + c_2 \begin{pmatrix} 1\\-3\\0\\1 \end{pmatrix}.$$

- 5. $\vec{p} = A\hat{x} = \frac{1}{45}[-8, 100, 266]^T$, and $\vec{e} = \vec{c} \vec{p} = \frac{1}{45}[8, -10, 4]^T$.
- 6. Since A doesn't have full column rank, we can't just plug it into the formula for projection matrices. However, we can if we drop the two free columns (the 3^{rd} and 4^{th}). If C is the matrix consisting of the two remaining pivot columns of A, then C(A) = C(C), so

$$P = C(C^T C)^{-1} C^T = \frac{1}{45} \begin{pmatrix} 29 & 20 & -8\\ 20 & 20 & 10\\ -8 & 10 & 41 \end{pmatrix}$$

7. The projection matrix onto $C(A^T)$ is the matrix $E(E^T E)^{-1} E^T$, where E is the matrix formed by the pivot columns of A^T . By taking the RREF of A^T , we see that the first two columns

are pivot columns. So
$$E = \begin{pmatrix} 1 & 2 \\ -1 & 0 \\ 5 & 4 \\ 4 & -2 \end{pmatrix}$$
, giving $P = \begin{pmatrix} 19 & 9 & 11 & 8 \\ 9 & 6 & 0 & 9 \\ 11 & 0 & 22 & -11 \\ 8 & 9 & -11 & 19 \end{pmatrix}$. This gives
 $\hat{x}_{row} = P\hat{x}_p = \frac{1}{1485} \begin{pmatrix} 1472 \\ 798 \\ 550 \\ 922 \end{pmatrix}$.

So we get

$$\hat{x} = \frac{1}{1485} \begin{pmatrix} 1472\\798\\550\\922 \end{pmatrix} + c_1 \begin{pmatrix} 2\\3\\1\\0 \end{pmatrix} + c_2 \begin{pmatrix} 1\\-3\\0\\1 \end{pmatrix}.$$