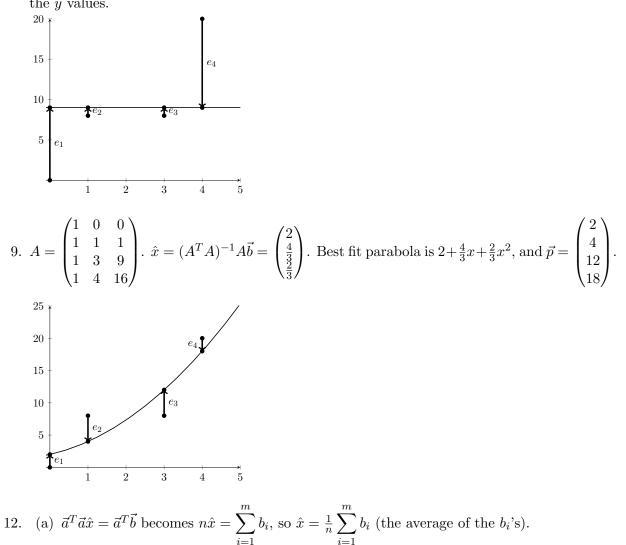
Page 229

1.
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 3 & 1 \\ 4 & 1 \end{pmatrix}$$
. $\vec{b} = \begin{pmatrix} 0 \\ 8 \\ 8 \\ 20 \end{pmatrix}$. So $A^T A \hat{x} = \begin{pmatrix} 26 & 8 \\ 8 & 4 \end{pmatrix}$ and $A^T \vec{b} = \begin{pmatrix} 112 \\ 36 \end{pmatrix}$. $\hat{x} = (A^T A)^{-1} A^T \vec{b} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$. So $\vec{p} = A \hat{x} = \begin{pmatrix} 1 \\ 5 \\ 13 \\ 17 \end{pmatrix}$, and $E = |\vec{e}|^2 = (\vec{b} - \vec{p})^2 = 44$.

5. $A = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$. So $A^T A = 4$, and $A^T \vec{b} = 36$. Therefore $\hat{x} = 9$. Note that this is the average of

the y values.



(b)
$$\vec{e} = \vec{b} - \vec{a}\hat{x} = \begin{pmatrix} b_1 - \hat{x} \\ \vdots \\ b_m - \hat{x} \end{pmatrix}$$
. So the variance $|\vec{e}|^2 = \sum_{i=1}^m (b_i - \hat{x})^2$, and the standard deviation
is $\sqrt{\sum_{i=1}^m (b_i - \hat{x})^2}$.
(c) $\vec{e} = \vec{b} - \vec{p} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$. $\vec{e} \cdot \vec{p} = -2 \cdot 3 + -1 \cdot 3 + 3 \cdot 3 = 0$, so $\vec{e} \perp \vec{p}$. $P = \frac{\vec{a}\vec{a}^T}{\vec{a}\vec{a}^T} = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

17.
$$7 = C - D$$
, $7 = C + D$, $21 = C + 2D$. Then $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 7 \\ 7 \\ 21 \end{pmatrix}$. So $\hat{x} = (1 - 1) \cdot T \vec{x} = \begin{pmatrix} 9 \\ 21 \end{pmatrix}$.

$$(A^T A)^{-1} A^T b = \begin{pmatrix} 3\\ 4 \end{pmatrix}$$
. The best fit line is $y = 4x + 9$.

18.
$$\vec{p} = A\hat{x} = \begin{pmatrix} 5\\13\\17 \end{pmatrix}$$
. $\vec{e} = \vec{p} - \vec{b} = \begin{pmatrix} 2\\6\\4 \end{pmatrix}$. $P\vec{e} = \vec{0}$, since by definition $\vec{e} \in N(P)$.

19. We are solving $A^T A \hat{x} = A^T \vec{c}$ for $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix}$, $\vec{c} = [2, -6, 4]^T$. RREF of $[A^T A | A^T \vec{c}]$ is

 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, so $\hat{x} = [0, 0]^T$. The line is therefore y = 0. This makes sense, since $\vec{c} \perp [-1, 1, 2]^T$, the vector of times, so the projection onto C(A) is the zero vector.

25. Consider the matrix
$$\begin{pmatrix} 1 & t_1 & b_1 \\ 1 & t_2 & b_2 \\ 1 & t_3 & b_3 \end{pmatrix}$$
. The row echelon form of this is

$$\begin{pmatrix} 1 & t_1 & b_1 \\ 0 & 1 & \frac{b_2 - b_1}{t_2 - t_1} \\ 0 & 0 & (b_3 - b_1) - \frac{b_2 - b_1}{t_2 - t_1} (t_3 - t_1) \end{pmatrix}$$

So we need $(b_3 - b_1) - \frac{t_3 - t_1}{t_2 - t_1}(b_2 - b_1) = 0$, or

$$\frac{b_3 - b_1}{t_3 - t_1} = \frac{b_2 - b_1}{t_2 - t_1}.$$

That is, the slope between (t_1, b_1) and (t_2, b_2) must be the same as the slope between (t_1, b_1) and (t_3, b_3)which makes sense!

Page 242

- 4. (a) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Any non-square matrix with orthonormal columns will do.
 - (b) Any vector and the the zero vector.

(c)
$$\frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
, $\frac{1}{\sqrt{3}} \begin{pmatrix} 1\\0\\1 \end{pmatrix}$, $\frac{1}{\sqrt{5}} \begin{pmatrix} 1\\-2\\1 \end{pmatrix}$. There are many other answers.

6.
$$(Q_1Q_2)^T(Q_1Q_2) = Q_2^TQ_1^TQ_1Q_2 = Q_2^TQ_2 = I$$

- 10. (a) If $c_1\vec{q_1} + c_2\vec{q_2} + c_3\vec{q_3} = \vec{0}$, and the q_i 's are orthonormal, then by taking dot product with q_1 , we get $c_1\vec{q_1} \cdot \vec{q_1} + c_2\vec{q_2} \cdot \vec{q_1} + c_3\vec{q_3} \cdot \vec{q_1} = \vec{0} \cdot \vec{q_1} \Rightarrow c_1 = 0$. Similarly, by taking dot products with q_2 and q_3 , we get that $c_2 = c_3 = 0$.
 - (b) If $Q\vec{x} = \vec{0}$, then $Q^TQ\vec{x} = Q^T\vec{0} = \vec{0}$. Since Q is orthonormal, $Q^TQ = I$, so we get $\vec{x} = \vec{0}$.

11. (a) First normalize
$$\vec{a}$$
 to get $q_1 = \frac{1}{10} \begin{pmatrix} 1\\ 3\\ 4\\ 5\\ 7 \end{pmatrix}$. Then $v_2 = \vec{b} - \vec{q_1}^T \vec{b} \vec{q_1} = \begin{pmatrix} 7\\ 3\\ 4\\ -5\\ 1 \end{pmatrix}$. Normalize to get

$$q_{2} = \frac{1}{10} \begin{pmatrix} 3\\ 4\\ -5\\ 1 \end{pmatrix}.$$
(b) We want to project $\vec{v} = \begin{pmatrix} 1\\ 0\\ 0\\ 0\\ 0 \end{pmatrix}$ onto the plane. Let $Q = [q_{1}|q_{2}]$. Then $P = QQ^{T} = \frac{1}{50} \begin{pmatrix} 25\\ -9\\ -12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 16\\ 15\\ 0 \end{pmatrix}.$ So $P\vec{v} = \frac{1}{50} \begin{pmatrix} 25\\ -9\\ -12\\ 20\\ 0 \end{pmatrix}.$

15. (a) By GS on the matrix $[A|e_1]$ where e_1 is $[1, 0, 0]^T$, we get $q_1 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\ 2\\ 2 \end{pmatrix}$, $q_2 = \frac{1}{\sqrt{66}} \begin{pmatrix} 7\\ 1\\ 4 \end{pmatrix}$, $q_3 = \frac{1}{\sqrt{11}} \begin{pmatrix} 1\\ 3\\ 1 \end{pmatrix}$. (b) $q_3 \in N(A^T)$.

(c) If $Q = [q_1|q_2]$, the least squares solution is $Q^T \begin{pmatrix} 1\\ 2\\ 7 \end{pmatrix} = \begin{pmatrix} 11\sqrt{6}\\ \frac{37}{\sqrt{66}} \end{pmatrix}$.

20. (a) True, since if Q is orthogonal, $Q^T Q = I$, so $Q^{-1} = Q^T$, which satisfies the same. (b) True, since for any $\vec{x} \in \mathbb{R}^2$, $|Q\vec{x}|^2 = (Q\vec{x})^T (Q\vec{x}) = \vec{x}^T Q^T Q \vec{x} = \vec{x}^T \vec{x} = |x|^2$.

23.
$$q_1 = a_1, q_2 = \frac{1}{3}a_2 - \frac{2}{3}a_1, q_3 = \frac{1}{5}v_3 - \frac{2}{5}v_2. Q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, R = \begin{pmatrix} 1 & 2 & 4 \\ 0 & 3 & 6 \\ 0 & 0 & 5 \end{pmatrix}.$$

24. (a) A simple basis is
$$\begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}$$
, $\begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}$, $\begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}$.

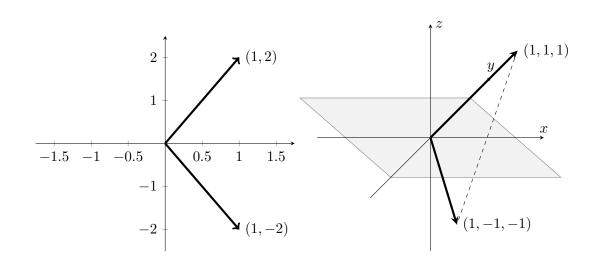
(b) Coefficients of the hyperplane form a basis: $\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$. (Or: append [1, 0, 0, 0] to the matrix formed by the basis above and do CS to get the same result.)

formed by the basis above and do GS to get the same result.)

(c)
$$\vec{b_1} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 3 \end{pmatrix}$$
, and $\vec{b_2} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$.

32.
$$Q_{1} = I - 2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - 2 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \quad Q_{2} = I - 2 \begin{pmatrix} 0 \\ \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - 2 \begin{pmatrix} 0 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}.$$

Note that Q_1 reflects in the x axis, and Q_2 reflects in the plane y = -z.



33. The only such matrix is the identity.