MATH 218 SECTION 3 MIDTERM EXAMINATION 3

Name

Please **read all instructions** carefully before beginning.

- Do not open this test booklet until you are directed to do so.
- You have 75 minutes to complete this exam.
- If you finish early, go back and check your work.
- This exam is closed book.
- You may use a calculator to do arithmetic. No other technology is allowed.
- For full credit you must show your work so that your reasoning is clear.
- Do not spend too much time on any one problem. Read them all through first and attack them in an order that allows you to make the most progress.
- Good luck!

WHO IS THE MOST AWESOME PERSON TODAY?

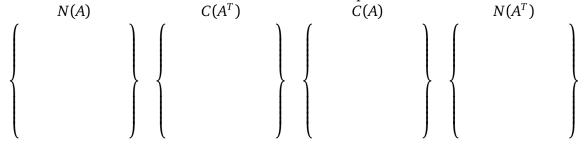
[This page intentionally left blank]

Consider the following matrix and its singular value decomposition $A = U\Sigma V^T$:

$$A = \begin{pmatrix} 1/\sqrt{10} & 1/\sqrt{15} & 1/\sqrt{2} & -1/\sqrt{3} \\ -2/\sqrt{10} & 3/\sqrt{15} & 0 & 0 \\ 2/\sqrt{10} & 2/\sqrt{15} & 0 & 1/\sqrt{3} \\ -1/\sqrt{10} & -1/\sqrt{15} & 1/\sqrt{2} & 1/\sqrt{3} \end{pmatrix} \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{3} & -1/\sqrt{3} & 1/\sqrt{3} \\ -1/\sqrt{6} & -2/\sqrt{6} & -1/\sqrt{6} \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} \end{pmatrix}.$$

From this you can read off all of the following properties of *A*.

- **a)** A is a \times matrix of rank r =
- **b)** Find orthonormal bases of the four fundamental subspaces of *A*:



c) Express A as a linear combination of rank-one matrices $\mathbf{u}\mathbf{v}^T$ (your answer should consist of vectors with numbers, not letters):

$$A =$$

d) Find a *unit* vector \mathbf{x} maximizing $|A\mathbf{x}|$:

$$\mathbf{x} = \left(\begin{array}{c} \\ \\ \end{array} \right) \qquad |A\mathbf{x}| = \boxed{}$$

e) Compute the matrix P for orthogonal projection onto C(A) (write it as a product, without expanding it out):

- a) The size and rank of A can be read off from Σ : A is a 4 × 3 matrix of rank 2.
- **b)** The columns of *U* and *V* give orthonormal bases for the four subspaces.

$$N(A): \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\0\\1 \end{pmatrix} \right\}$$

$$C(A^{T}): \left\{ \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \frac{1}{\sqrt{6}} \begin{pmatrix} -1\\-2\\-1 \end{pmatrix} \right\}$$

$$C(A): \left\{ \frac{1}{\sqrt{10}} \begin{pmatrix} 1\\-2\\2\\-1 \end{pmatrix}, \frac{1}{\sqrt{15}} \begin{pmatrix} 1\\3\\2\\-1 \end{pmatrix} \right\}$$

$$N(A^{T}): \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}, \frac{1}{\sqrt{3}} \begin{pmatrix} -1\\0\\1\\1 \end{pmatrix} \right\}.$$

c) This is the vector form of the SVD:

$$A = 3 \cdot \frac{1}{\sqrt{10}} \begin{pmatrix} 1 \\ -2 \\ 2 \\ -1 \end{pmatrix} \cdot \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & -1 & 1 \end{pmatrix} + 2 \cdot \frac{1}{\sqrt{15}} \begin{pmatrix} 1 \\ 3 \\ 2 \\ -1 \end{pmatrix} \cdot \frac{1}{\sqrt{6}} \begin{pmatrix} -1 & -2 & -1 \end{pmatrix}$$

d) The maximum value of $|A\mathbf{x}|$ is σ_1 and is attained at \mathbf{v}_1 :

$$\mathbf{x} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad |A\mathbf{x}| = 3$$

e) The orthogonal projection onto C(A) is $AA^+ = (U\Sigma V^T)(V\Sigma^+U^T) = U\Sigma\Sigma^+U^T$, which is

$$P = \begin{pmatrix} 1/\sqrt{10} & 1/\sqrt{15} & 1/\sqrt{2} & -1/\sqrt{3} \\ -2/\sqrt{10} & 3/\sqrt{15} & 0 & 0 \\ 2/\sqrt{10} & 2/\sqrt{15} & 0 & 1/\sqrt{3} \\ -1/\sqrt{10} & -1/\sqrt{15} & 1/\sqrt{2} & 1/\sqrt{3} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

$$\begin{pmatrix} 1/\sqrt{10} & 1/\sqrt{15} & 1/\sqrt{2} & -1/\sqrt{3} \\ -2/\sqrt{10} & 3/\sqrt{15} & 0 & 0 \\ 2/\sqrt{10} & 2/\sqrt{15} & 0 & 1/\sqrt{3} \\ -1/\sqrt{10} & -1/\sqrt{15} & 1/\sqrt{2} & 1/\sqrt{3} \end{pmatrix}^{T}.$$

Consider the symmetric matrix

$$S = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \end{pmatrix}.$$

a) Find an orthogonal matrix Q and a diagonal matrix Λ such that $S = Q\Lambda Q^T$:

$$Q = \left(\begin{array}{cc} & & \\ & & \\ & & \end{array}\right) \qquad \Lambda = \left(\begin{array}{cc} & & \\ & & \\ & & \end{array}\right)$$

b) Circle one: *S* is

positive-definite positive-semidefinite neither of these

c) Write down the singular value decomposition of *S*:

$$S = \left(\begin{array}{c} \\ \\ \\ \end{array}\right) \left(\begin{array}{c} \\ \\ \end{array}\right)$$

a) First we compute the eigenvalues of *S*. We find the characteristic polynomial by expanding cofactors along the first column:

$$p(\lambda) = \det\begin{pmatrix} 1 - \lambda & 0 & 2 \\ 0 & -1 - \lambda & -2 \\ 2 & -2 & -\lambda \end{pmatrix}$$

$$= (1 - \lambda) \det\begin{pmatrix} -1 - \lambda & -2 \\ -2 & -\lambda \end{pmatrix} + 2 \det\begin{pmatrix} 0 & 2 \\ -1 - \lambda & -2 \end{pmatrix}$$

$$= (1 - \lambda) [(-1 - \lambda)(-\lambda) - 4] + 2[-2(-1 - \lambda)]$$

$$= (1 - \lambda)(\lambda^2 + \lambda - 4) - 4(-1 - \lambda)$$

$$= \lambda^2 + \lambda - 4 - \lambda^3 - \lambda^2 + 4\lambda + 4 + 4\lambda$$

$$= -\lambda^3 + 9\lambda = -\lambda(\lambda - 3)(\lambda + 3).$$

The eigenvalues are 0 and ± 3 ; we compute eigenvectors:

$$\lambda = 3: S - 3I = \begin{pmatrix} -2 & 0 & 2 \\ 0 & -4 & 2 \\ 2 & -2 & -3 \end{pmatrix} \xrightarrow{\text{RREF}} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\mathbf{v}_1} \mathbf{v}_1 = \frac{1}{3} \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$$

$$\lambda = -3: S + 3I = \begin{pmatrix} 4 & 0 & 2 \\ 0 & 2 & 2 \\ 2 & -2 & 3 \end{pmatrix} \xrightarrow{\text{RREF}} \begin{pmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\mathbf{v}_2} \mathbf{v}_2 = \frac{1}{3} \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}$$

$$\lambda = 0: S - 0I = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \end{pmatrix} \xrightarrow{\text{RREF}} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\mathbf{v}_3} \mathbf{v}_3 = \frac{1}{3} \begin{pmatrix} -2 \\ -2 \\ 1 \end{pmatrix}$$

Hence $S = Q\Lambda Q^T$ for

$$Q = \frac{1}{3} \begin{pmatrix} 2 & -1 & -2 \\ -1 & 2 & -2 \\ 2 & 2 & 1 \end{pmatrix} \qquad \Lambda = \begin{pmatrix} 3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

- **b)** *S* has a negative eigenvalue, so it is neither positive-definite nor positive-semidefinite.
- **c)** The singular values of *S* are the absolute values of the nonzero eigenvalues: $\sigma_1 = \sigma_2 = 3$. We have

$$3\mathbf{v}_1 = S\mathbf{v}_1 = \sigma_1\mathbf{u}_1 \implies \mathbf{u}_1 = \mathbf{v}_1$$
$$-3\mathbf{v}_2 = S\mathbf{v}_2 = \sigma_2\mathbf{u}_2 \implies \mathbf{u}_2 = -\mathbf{v}_2.$$

We can take $\mathbf{u}_3 = \mathbf{v}_3$ as our orthonormal basis of $N(S) = N(S^T)$, so

$$S = \frac{1}{3} \begin{pmatrix} 2 & 1 & -2 \\ -1 & -2 & -2 \\ 2 & -2 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix} \frac{1}{3} \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & 2 \\ -2 & -2 & 1 \end{pmatrix}$$

Consider the matrix

$$A = \begin{pmatrix} 2 & -1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}.$$

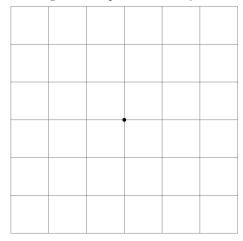
a) Find an invertible matrix X and a diagonal matrix Λ such that $A = X\Lambda X^{-1}$.

$$X = \left(\begin{array}{c} \\ \\ \end{array} \right) \qquad \Lambda = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

b) Compute $A^n \mathbf{v}_0$ for $\mathbf{v}_0 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. What happens when $n \to \infty$?

$$A^n \mathbf{v}_0 = \left(\qquad \right) \qquad A^n \mathbf{v}_0 \xrightarrow{n \to \infty} \left(\qquad \right)$$

c) In the diagram, *draw and label* the eigenspaces of A, and draw the vectors $\mathbf{v}_0, A\mathbf{v}_0, A^2\mathbf{v}_0, A^3\mathbf{v}_0, \ldots$ as points. (The grid lines are one unit apart, and the dot is the origin.) [Hint: you do not have to compute $A^n\mathbf{v}_0$ numerically to do this.]



d) Solve the system of ordinary differential equations

$$\frac{\frac{d}{dt}u_1 = 2u_1 - u_2}{\frac{d}{dt}u_2 = \frac{3}{2}u_1 - \frac{1}{2}u_2} \quad u_1(0) = 1 \qquad u_1(t) = 0$$

$$u_2(t) = 0$$

a) The characteristic polynomial of *A* is

$$p(\lambda) = \lambda^2 - \text{Tr}(A)\lambda + \det(A) = \lambda^2 - \frac{3}{2}\lambda + \frac{1}{2} = (\lambda - 1)\left(\lambda - \frac{1}{2}\right).$$

The eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = \frac{1}{2}$. We compute eigenvectors:

$$A - 1I = \begin{pmatrix} 1 & -1 \\ - & - \end{pmatrix} \quad \text{\longrightarrow} \quad \mathbf{q}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$A - \frac{1}{2}I = \begin{pmatrix} \frac{3}{2} & -1 \\ - & - \end{pmatrix} \quad \text{we } \quad \mathbf{q}_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

Hence $A = X\Lambda X^{-1}$ for

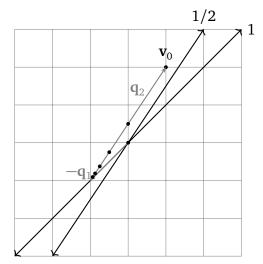
$$X = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \qquad \Lambda = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}.$$

b) We eyeball $\mathbf{v}_0 = -\mathbf{q}_1 + \mathbf{q}_2$, so

$$A^n\mathbf{v}_0 = -\mathbf{q}_1 + \frac{1}{2^n}\mathbf{q}_2.$$

This approaches $-\mathbf{q}_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ as $n \to \infty$.

c) The eigenspaces are spanned by \mathbf{q}_1 and \mathbf{q}_2 .



d) We need to solve $\mathbf{u}' = A\mathbf{u}$ for $\mathbf{u}(0) = \binom{1}{2} = \mathbf{v}_0$ and A as above. We have $\mathbf{u}(0) = -\mathbf{q}_1 + \mathbf{q}_2$, so the solution is

$$\mathbf{u}(t) = -e^{t}\mathbf{q}_{1} + e^{t/2}\mathbf{q}_{2} \implies u_{1} = -e^{t} + 2e^{t/2}$$
$$u_{2} = -e^{t} + 3e^{t/2}$$

All of the following statements are false. Provide a counterexample to each. You need not justify your answers.

a) The singular values of a diagonalizable, invertible, square matrix are the absolute values of the eigenvalues. [Hint: try a 2×2 matrix of the form $\binom{a}{0} \binom{b}{d}$.]

b) If a matrix has determinant zero, then two of the columns are multiples of each other, or one of the columns is zero.

c) If S is symmetric, then either S or -S is positive-semidefinite.

d) If λ is an eigenvalue of AA^T , then λ is an eigenvalue of A^TA .

a) The matrix $A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$ has eigenvalues 1 and 2, so it is invertible and diagonalizable. However,

$$A^{T}A = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 5 \end{pmatrix}$$

has characteristic polynomial $p(\lambda) = \lambda^2 - \text{Tr}(A)\lambda + \det(A) = \lambda^2 - 6\lambda + 4$; we have $p(1^2) = -1$ and $p(2^2) = -4$, so neither 1 nor 2 is a singular value of A.

b) One column can be the sum of the other two; for instance,

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 5 \\ 3 & 4 & 7 \end{pmatrix}.$$

c) Any symmetric matrix *S* with both positive and negative eigenvalues works:

$$S = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

d) This can only be true for $\lambda = 0$ (see 5(a)). Zero is an eigenvalue of A^TA (resp. AA^T) if and only if A has linearly independent columns (resp. rows), so we need to find a matrix with linearly independent columns and linearly dependent rows. For instance:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Prove the following statements. (None should take more than a couple of lines.)

a) If λ is a eigenvalue of A^TA and $\lambda > 0$, then λ is also an eigenvalue of AA^T .

b) If *A* is a 3×3 matrix that has eigenvalues 1 and -1, both of algebraic multiplicity one, then *A* is diagonalizable (over the real numbers).

c) The row space of *A* equals the row space of A^TA .

d) If *A* has linearly independent columns then A^+A is the identity matrix.

a) Say $A^T A \mathbf{v} = \lambda \mathbf{v}$. Set $\mathbf{u} = A \mathbf{v}$; this is not zero because $A^T \mathbf{u} = A^T A \mathbf{v} = \lambda \mathbf{v} \neq 0$. Then $AA^T \mathbf{u} = AA^T A \mathbf{v} = A(A^T A \mathbf{v}) = A(\lambda \mathbf{v}) = \lambda A \mathbf{v} = \lambda \mathbf{u}$,

so **u** is an eigenvector of AA^T with eigenvalue λ .

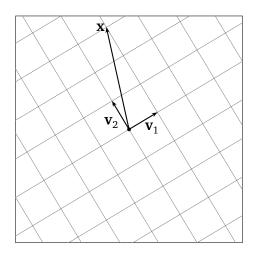
- b) The characteristic polynomial $p(\lambda)$ has roots at ± 1 . Since $p(\lambda)$ has degree 3, it has a third root λ ; since complex roots of p come in conjugate pairs, λ must be real. Since ± 1 have algebraic multiplicity one, $\lambda \neq \pm 1$, so A has three distinct eigenvalues, hence is diagonalizable.
- **c)** The null space of A^TA is equal to N(A). The row space of A^TA is the orthogonal complement of $N(A^TA) = N(A)$, as is the row space of A^TA .
- **d)** Since *A* has linearly independent columns, its null space is zero, so its row space is all of \mathbf{R}^n . But A^+A is the projection onto the row space of *A*, and the projection onto all of \mathbf{R}^n is the identity.

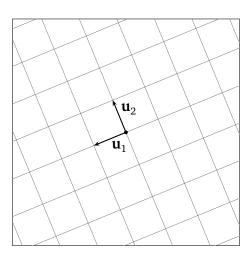
Problem 6. [8 points]

A certain 2×2 matrix *A* has the singular value decomposition

$$A = \begin{pmatrix} \begin{vmatrix} & & | \\ \mathbf{u}_1 & \mathbf{u}_2 \\ | & & | \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \begin{vmatrix} & & | \\ \mathbf{v}_1 & \mathbf{v}_2 \\ | & & | \end{pmatrix}^T,$$

where $\mathbf{u}_1, \mathbf{u}_2, \mathbf{v}_1, \mathbf{v}_2$ are drawn in the diagrams below. Given \mathbf{x} in the diagram on the left, draw $A\mathbf{x}$ on the diagram on the right.





We have ${\bf x}={\bf v}_1+3{\bf v}_2$. The way the SVD works, we have $A{\bf v}_1=2{\bf u}_1$ and $A{\bf v}_2=0$, so $A{\bf x}=A{\bf v}_1+3A{\bf v}_2=2{\bf u}_1.$

