MATH 218 SECTION 3
MIDTERM EXAMINATION 3

Name Duke UniqueID

Please read all instructions carefully before beginning.
¢ Do not open this test booklet until you are directed to do so.
e You have 75 minutes to complete this exam.
e If you finish early, go back and check your work.
e This exam is closed book.
e You may use a calculator to do arithmetic. No other technology is allowed.
e For full credit you must show your work so that your reasoning is clear.

e Do not spend too much time on any one problem. Read them all through first and
attack them in an order that allows you to make the most progress.
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Problem 1.

Consider the following matrix and its singular value decomposition A= UXV":

1/4/10

1/V15 1/4/2 —-1/V3

3 00

[20 points]

Ao —2/4/10 3/4/15 0 o]lo 2 0 _Zﬁ :Zﬁ _Zﬁ
| 2/v10 2/4/15 o 1/¥3]|l0 00 U2 o 1v3
—-1/4/10 —1/4/15 1/¥2 1/+/3)\0 0 0
From this you can read off all of the following properties of A.
a) Aisa X matrix of rank r =
b) Find orthonormal bases of the four fundamental subspaces of A:
N(A) Cc(A") C(A) N(AT)
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¢) Express A as a linear combination of rank-one matrices uv’ (your answer should
consist of vectors with numbers, not letters):

d) Find a unit vector x maximizing |Ax|:

|Ax| =

e) Compute the matrix P for orthogonal projection onto C(A) (write it as a product,
without expanding it out):



Solution.
a) The size and rank of A can be read off from >3: Ais a 4 x 3 matrix of rank 2.

b) The columns of U and V give orthonormal bases for the four subspaces.

w3 ()

c(Al):

1
1 —2 1 3
e {m(z ’ 15(2
—1 —1
1
N(AT): 8 .
1

¢) This is the vector form of the SVD:

1 1
1 [—2] 1 1 3
A=3-—| | (1 -1 1)+2-— 5

e (-1 -2 -1)

&)=

-1 -1

d) The maximum value of |Ax| is o, and is attained at v;:

1 1

e) The orthogonal projection onto C(A) is AA* = (UZVT)(VZTUT) = UzZxtUT, which
is

1/4/10  1/4/15 1/¥2 —1//3\ /1 0 ©

po —2/4/10 3/4/15 0 oflo 10
| 2/4/10 2/4/15 0 1/¥/3 |0 0 O
0 00

—-1/4/10 —1/4/15 1/4/2 1/4/3

1/¥/10 1/4/15 1/v/2 —1/4/3
—2/4/10  3/4/15 0 0
2/v/10  2/4/15 0 1/V3
-1/4/10 —1/4/15 1/v/2 1/4/3



Problem 2. [20 points]

1 0 2
S=({0 -1 =2 ].
2 -2 0

a) Find an orthogonal matrix Q and a diagonal matrix A such that S = QAQT:

Consider the symmetric matrix

b) Circle one: S is

positive-definite positive-semidefinite neither of these

¢) Write down the singular value decomposition of S:



Solution.

a) First we compute the eigenvalues of S. We find the characteristic polynomial by
expanding cofactors along the first column:

1-A 0 2
p(A)=det] 0 —-1—-24 =2

2 -2 A

:(1—/1)c1et(_1_;7L :i)+2det(_1o_)\ _22)
=(1-A[(-1-A)A)—4]+2[-2(-1-1)]
=(1-AA+A1—4)—4(—1—21)
=A4+A—4—2L—A*+4A+4+4A
=-A34+91=—A(A—3)(A +3).

The eigenvalues are 0 and £3; we compute eigenvectors:

0

2

1

0

—1 2

—2 RREF : 1
A= 3: S=3I=| 0 —4 2| wewiwr [0 1 1| e y=—[-1

2 —2 -3 00 0 3\ 2

1

4 0 2\ prer 10 1 NG
A=—-3: S+3[=| 0 2 2| wwwimw [0 1 —1 | www yy==| 2

2 —2 3 00 0 3\ 2

1 0 2\ gpgp (10 2 (2
A= 0: S—0I=| 0 —1 —2| wwwims [0 1 2| wwww yy=—|—2

2 —2 0 00 0 3\ 1

Hence S = QAQ! for

L2 -1 =2 3 0 0
Q==|-1 2 —2 A=|l0 =3 o].
3\ 2 2 1 0 0 0

b) S has anegative eigenvalue, so it is neither positive-definite nor positive-semidefinite.
¢) The singular values of S are the absolute values of the nonzero eigenvalues: o, =
o, = 3. We have
3vi=8vi =04y = u, =V,
_3V2 == SV2 = 0'2112 :> 112 = _Vz.
We can take u; = v, as our orthonormal basis of N(S) = N(S”), so

2 1 -2\(3 0 0\,( 2 -1 2
1 —2 —21lo3o0]2[-1 22
2 2 1J\ooo0/3\—2 —2 1

S =

W=



Problem 3. [20 points]

2 —1
2 2

a) Find an invertible matrix X and a diagonal matrix A such that A=XAX".

Consider the matrix

X: A:

b) Compute A"v, for v, = G) What happens when n — o0?

n—o0
Alv, = Alvy ——

¢) In the diagram, draw and label the eigenspaces of A, and draw the vectors v, Av,,
A*v,,A%v,,, ... as points. (The grid lines are one unit apart, and the dot is the origin.)
[Hint: you do not have to compute A"v, numerically to do this.]

d) Solve the system of ordinary differential equations

%ul =2u— uy, wy(0)=1 s uy(t) =
%uz = %ul - %uz uZ(O) =2 uz(t) =



Solution.

a) The characteristic polynomial of A is

p(A) = A2 — Tr(A)A + det(A) = A% — %A + % —(A— 1)(1— 1).

The eigenvalues are A; =1 and A, = % We compute eigenvectors:

(1 2) = ae()
()

Hence A= XAX"! for

b) We eyeball vy =—q; +q,, so

1
A, =—q; + —q,.
Vo q: on 92

This approaches —q; = (j) asn— 09.
¢) The eigenspaces are spanned by q; and q,.
1/2
1
Vo

9.

d) We need to solve u’ = Au for u(0) = (}) = v, and A as above. We have u(0) =
—q; + q,, so the solution is

u, = —et + 2et/?
u(t) =—e'q, +e'/? = 1
( ) q qz U, = _et +3€t/2



Problem 4. [16 points]

All of the following statements are false. Provide a counterexample to each. You need
not justify your answers.

a) The singular values of a diagonalizable, invertible, square matrix are the absolute
values of the eigenvalues. [Hint: try a 2 x 2 matrix of the form (g 3).]

b) If a matrix has determinant zero, then two of the columns are multiples of each
other, or one of the columns is zero.

¢) If S is symmetric, then either S or —S is positive-semidefinite.

d) If A is an eigenvalue of AAT, then A is an eigenvalue of A”A.



Solution.

a) The matrix A = ((1) ;) has eigenvalues 1 and 2, so it is invertible and diagonalizable.

However,
10 11 11
TaA_— —
#a=(13)(0 2)=(1 5)

has characteristic polynomial p(1) = A% — Tr(A)A + det(A) = A2 — 61 + 4; we have
p(1?) = —1 and p(2?) = —4, so neither 1 nor 2 is a singular value of A.

b) One column can be the sum of the other two; for instance,

1 2 3
2 3 5.
347
¢) Any symmetric matrix S with both positive and negative eigenvalues works:
1 O
(5 %)

d) This can only be true for A = 0 (see 5(a)). Zero is an eigenvalue of ATA (resp.
AAT) if and only if A has linearly independent columns (resp. rows), so we need to
find a matrix with linearly independent columns and linearly dependent rows. For

instance:
10
A=|0 1.
00



Problem 5. [16 points]

Prove the following statements. (None should take more than a couple of lines.)

a) If A is a eigenvalue of ATA and A > 0, then A is also an eigenvalue of AAT.

b) If A is a 3 x 3 matrix that has eigenvalues 1 and —1, both of algebraic multiplicity
one, then A is diagonalizable (over the real numbers).

¢) The row space of A equals the row space of ATA.

d) If A has linearly independent columns then A*A is the identity matrix.



Solution.
a) Say ATAv = Av. Set u = Av; this is not zero because A”u = ATAv = Av # 0. Then
AATu = AATAV = A(ATAv) = A(AV) = AAV = A,
so u is an eigenvector of AAT with eigenvalue A.

b) The characteristic polynomial p(A) has roots at 1. Since p(A) has degree 3, it has a
third root A; since complex roots of p come in conjugate pairs, A must be real. Since
+1 have algebraic multiplicity one, A # %1, so A has three distinct eigenvalues,
hence is diagonalizable.

¢) The null space of A"A is equal to N(A). The row space of A’A is the orthogonal
complement of N(ATA) = N(A), as is the row space of ATA.

d) Since A has linearly independent columns, its null space is zero, so its row space is
all of R". But A*A is the projection onto the row space of A, and the projection onto
all of R" is the identity.



Problem 6. [8 points]

A certain 2 x 2 matrix A has the singular value decomposition
T
|

a0 1)

where u;, u,,v;, Vv, are drawn in the diagrams below. Given x in the diagram on the left,
draw Ax on the diagram on the right.

X

‘ : u,
v, ,
, * u

1




Solution.
We have x = v; + 3v,. The way the SVD works, we have Av, = 2u; and Av, =0, so

AX =AV1 + 3AV2 B 2111.




