
MATH 218 SECTION 3
MIDTERM EXAMINATION 3

Name Duke UniqueID

Please read all instructions carefully before beginning.

• Do not open this test booklet until you are directed to do so.

• You have 75 minutes to complete this exam.

• If you finish early, go back and check your work.

• This exam is closed book.

• You may use a calculator to do arithmetic. No other technology is allowed.

• For full credit you must show your work so that your reasoning is clear.

• Do not spend too much time on any one problem. Read them all through first and
attack them in an order that allows you to make the most progress.

• Good luck!
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Problem 1. [20 points]

Consider the following matrix and its singular value decomposition A= UΣV T :
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From this you can read off all of the following properties of A.

a) A is a × matrix of rank r = .

b) Find orthonormal bases of the four fundamental subspaces of A:
N(A) C(AT ) C(A) N(AT )
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c) Express A as a linear combination of rank-one matrices uvT (your answer should
consist of vectors with numbers, not letters):

A=

d) Find a unit vector x maximizing |Ax|:
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e) Compute the matrix P for orthogonal projection onto C(A) (write it as a product,
without expanding it out):

P =



Solution.
a) The size and rank of A can be read off from Σ: A is a 4× 3 matrix of rank 2.

b) The columns of U and V give orthonormal bases for the four subspaces.
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c) This is the vector form of the SVD:
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d) The maximum value of |Ax| is σ1 and is attained at v1:
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|Ax|= 3

e) The orthogonal projection onto C(A) is AA+ = (UΣV T )(VΣ+U T ) = UΣΣ+U T , which
is

P =
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Problem 2. [20 points]

Consider the symmetric matrix

S =
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.

a) Find an orthogonal matrix Q and a diagonal matrix Λ such that S =QΛQT :
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c) Write down the singular value decomposition of S:
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Solution.
a) First we compute the eigenvalues of S. We find the characteristic polynomial by

expanding cofactors along the first column:

p(λ) = det
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b) S has a negative eigenvalue, so it is neither positive-definite nor positive-semidefinite.

c) The singular values of S are the absolute values of the nonzero eigenvalues: σ1 =
σ2 = 3. We have

3v1 = Sv1 = σ1u1 =⇒ u1 = v1

−3v2 = Sv2 = σ2u2 =⇒ u2 = −v2.

We can take u3 = v3 as our orthonormal basis of N(S) = N(ST ), so
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Problem 3. [20 points]

Consider the matrix

A=
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3
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.

a) Find an invertible matrix X and a diagonal matrix Λ such that A= XΛX−1.

X =
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c) In the diagram, draw and label the eigenspaces of A, and draw the vectors v0, Av0,
A2v0, A3v0, . . . as points. (The grid lines are one unit apart, and the dot is the origin.)
[Hint: you do not have to compute Anv0 numerically to do this.]

d) Solve the system of ordinary differential equations
d
d t u1 = 2u1 − u2
d
d t u2 =

3
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1
2u2

u1(0) = 1
u2(0) = 2

u1(t) =
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Solution.
a) The characteristic polynomial of A is

p(λ) = λ2 − Tr(A)λ+ det(A) = λ2 −
3
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1
2
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The eigenvalues are λ1 = 1 and λ2 =
1
2 . We compute eigenvectors:
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b) We eyeball v0 = −q1 + q2, so

Anv0 = −q1 +
1
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c) The eigenspaces are spanned by q1 and q2.
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d) We need to solve u′ = Au for u(0) =
�1

2

�

= v0 and A as above. We have u(0) =
−q1 + q2, so the solution is

u(t) = −etq1 + et/2q2 =⇒ u1 = −et + 2et/2

u2 = −et + 3et/2



Problem 4. [16 points]

All of the following statements are false. Provide a counterexample to each. You need
not justify your answers.

a) The singular values of a diagonalizable, invertible, square matrix are the absolute
values of the eigenvalues. [Hint: try a 2× 2 matrix of the form

�a b
0 d

�

.]

b) If a matrix has determinant zero, then two of the columns are multiples of each
other, or one of the columns is zero.

c) If S is symmetric, then either S or −S is positive-semidefinite.

d) If λ is an eigenvalue of AAT , then λ is an eigenvalue of AT A.



Solution.
a) The matrix A=

�1 1
0 2

�

has eigenvalues 1 and 2, so it is invertible and diagonalizable.
However,

AT A=
�

1 0
1 2

��

1 1
0 2

�

=
�

1 1
1 5

�

has characteristic polynomial p(λ) = λ2 − Tr(A)λ+ det(A) = λ2 − 6λ+ 4; we have
p(12) = −1 and p(22) = −4, so neither 1 nor 2 is a singular value of A.

b) One column can be the sum of the other two; for instance,
 

1 2 3
2 3 5
3 4 7

!

.

c) Any symmetric matrix S with both positive and negative eigenvalues works:

S =
�

1 0
0 −1

�

.

d) This can only be true for λ = 0 (see 5(a)). Zero is an eigenvalue of AT A (resp.
AAT ) if and only if A has linearly independent columns (resp. rows), so we need to
find a matrix with linearly independent columns and linearly dependent rows. For
instance:

A=

 

1 0
0 1
0 0

!

.



Problem 5. [16 points]

Prove the following statements. (None should take more than a couple of lines.)

a) If λ is a eigenvalue of AT A and λ > 0, then λ is also an eigenvalue of AAT .

b) If A is a 3× 3 matrix that has eigenvalues 1 and −1, both of algebraic multiplicity
one, then A is diagonalizable (over the real numbers).

c) The row space of A equals the row space of AT A.

d) If A has linearly independent columns then A+A is the identity matrix.



Solution.
a) Say AT Av= λv. Set u= Av; this is not zero because AT u= AT Av= λv 6= 0. Then

AAT u= AAT Av= A(AT Av) = A(λv) = λAv= λu,

so u is an eigenvector of AAT with eigenvalue λ.

b) The characteristic polynomial p(λ) has roots at ±1. Since p(λ) has degree 3, it has a
third root λ; since complex roots of p come in conjugate pairs, λmust be real. Since
±1 have algebraic multiplicity one, λ 6= ±1, so A has three distinct eigenvalues,
hence is diagonalizable.

c) The null space of AT A is equal to N(A). The row space of AT A is the orthogonal
complement of N(AT A) = N(A), as is the row space of AT A.

d) Since A has linearly independent columns, its null space is zero, so its row space is
all of Rn. But A+A is the projection onto the row space of A, and the projection onto
all of Rn is the identity.



Problem 6. [8 points]

A certain 2× 2 matrix A has the singular value decomposition

A=

 | |
u1 u2
| |

!

�

2 0
0 0

�

 | |
v1 v2
| |

!T

,

where u1,u2,v1,v2 are drawn in the diagrams below. Given x in the diagram on the left,
draw Ax on the diagram on the right.

v1
v2

x

u2

u1



Solution.
We have x= v1 + 3v2. The way the SVD works, we have Av1 = 2u1 and Av2 = 0, so

Ax= Av1 + 3Av2 = 2u1.

v1
v2

x

u2

u1
Ax


