MATH 218 SECTION 3
MIDTERM EXAMINATION 3

Name Duke UniqueID

Please read all instructions carefully before beginning.
¢ Do not open this test booklet until you are directed to do so.
e You have 75 minutes to complete this exam.
e If you finish early, go back and check your work.
e This exam is closed book.
e You may use a calculator to do arithmetic. No other technology is allowed.
e For full credit you must show your work so that your reasoning is clear.

e Do not spend too much time on any one problem. Read them all through first and
attack them in an order that allows you to make the most progress.
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Problem 1.

Consider the following matrix and its singular value decomposition A= UXV":
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[20 points]
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From this you can read off all of the following properties of A.
a) Aisa X matrix of rank r =
b) Find orthonormal bases of the four fundamental subspaces of A:
N(A) Cc(A") C(A) N(AT)
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¢) Express A as a linear combination of rank-one matrices uv’ (your answer should
consist of vectors with numbers, not letters):

d) Find a unit vector x maximizing |Ax|:

|Ax| =

e) Compute the matrix P for orthogonal projection onto C(A) (write it as a product,
without expanding it out):



[Scratch work for problem 1]



Problem 2. [20 points]

1 0 2
S=({0 -1 =2 ].
2 -2 0

a) Find an orthogonal matrix Q and a diagonal matrix A such that S = QAQT:

Consider the symmetric matrix

b) Circle one: S is

positive-definite positive-semidefinite neither of these

¢) Write down the singular value decomposition of S:



[Scratch work for problem 2]



Problem 3. [20 points]

2 —1
2 2

a) Find an invertible matrix X and a diagonal matrix A such that A=XAX".

Consider the matrix

X: A:

b) Compute A"v, for v, = G) What happens when n — o0?

n—o0
Alv, = Alvy ——

¢) In the diagram, draw and label the eigenspaces of A, and draw the vectors v, Av,,
A*v,,A%v,,, ... as points. (The grid lines are one unit apart, and the dot is the origin.)
[Hint: you do not have to compute A"v, numerically to do this.]

d) Solve the system of ordinary differential equations

%ul =2u— uy, wy(0)=1 s uy(t) =
%uz = %ul - %uz uZ(O) =2 uz(t) =



[Scratch work for problem 3]



Problem 4. [16 points]

All of the following statements are false. Provide a counterexample to each. You need
not justify your answers.

a) The singular values of a diagonalizable, invertible, square matrix are the absolute
values of the eigenvalues. [Hint: try a 2 x 2 matrix of the form (g 3).]

b) If a matrix has determinant zero, then two of the columns are multiples of each
other, or one of the columns is zero.

¢) If S is symmetric, then either S or —S is positive-semidefinite.

d) If A is an eigenvalue of AAT, then A is an eigenvalue of A”A.



[Scratch work for problem 4]



Problem 5. [16 points]

Prove the following statements. (None should take more than a couple of lines.)

a) If A is a eigenvalue of ATA and A > 0, then A is also an eigenvalue of AAT.

b) If A is a 3 x 3 matrix that has eigenvalues 1 and —1, both of algebraic multiplicity
one, then A is diagonalizable (over the real numbers).

¢) The row space of A equals the row space of ATA.

d) If A has linearly independent columns then A*A is the identity matrix.



[Scratch work for problem 5]



Problem 6. [8 points]

A certain 2 x 2 matrix A has the singular value decomposition
T
|

a0 1)

where u;, u,,v;, Vv, are drawn in the diagrams below. Given x in the diagram on the left,
draw Ax on the diagram on the right.

X

‘ : u,
v, ,
, * u

1




[Scratch work for problem 6]



