MATH 218D PRACTICE MIDTERM EXAMINATION 3

Please **read all instructions** carefully before beginning.

- You have 180 minutes to complete this exam and upload your work. The exam itself is meant to take 75 minutes to complete, so hopefully you will have enough time.
- For full credit you must **show your work** so that your reasoning is clear.
- If you need clarification or think you've found a typo, ask a **private question on Piazza**. We'll be monitoring it.
- If you have time, go back and check your work.
- You may use **your class notes** (not the ones from the website) and the **interactive row reducer** during this exam. You may use a **calculator** for doing arithmetic. All other materials and aids are strictly prohibited.
- You are not allowed to receive **outside help** during this exam. Consulting with someone else is considered cheating; suspected instances will result in immediate referral to to the Office of Student Conduct.
- Be sure to **tag your answers** on Gradescope, and **use a scanning app**.
- Good luck!

Complete when starting the exam: I will neither give nor receive aid on this exam.

Signed: Time:

Complete after finishing the exam: I have neither given nor received aid on this exam.

Signed: Time:

This is a practice exam. It is meant to be similar in format, length, and difficulty to the real exam. It is **not** meant as a comprehensive list of study problems. I recommend completing the practice exam in 75 minutes, without distractions.

Problem 1. [20 points]

Consider the following matrix and its singular value decomposition $A = U\Sigma V^T$:

$$
A = \begin{pmatrix} 1/\sqrt{10} & 1/\sqrt{15} & 1/\sqrt{2} & -1/\sqrt{3} \\ -2/\sqrt{10} & 3/\sqrt{15} & 0 & 0 \\ 2/\sqrt{10} & 2/\sqrt{15} & 0 & 1/\sqrt{3} \\ -1/\sqrt{10} & -1/\sqrt{15} & 1/\sqrt{2} & 1/\sqrt{3} \end{pmatrix} \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{3} & -1/\sqrt{6} & -1/\sqrt{2} \\ -1/\sqrt{3} & -2/\sqrt{6} & 0 \\ 1/\sqrt{3} & -1/\sqrt{6} & 1/\sqrt{2} \end{pmatrix}^T.
$$

From this you can read off all of the following properties of *A without* computing *A*.

- **a)** *A* is a \times \times \times \times matrix of rank $r =$
- **b)** Find orthonormal bases of the four fundamental subspaces of *A*.
- **c**) Compute the matrix P_V for orthogonal projection onto $V = \text{Col}(A)$ (write it as a product, without expanding it out).
- **d)** Write the SVD of *A* in vector form.
- **e**) Find an orthogonal diagonalization $A^T A = Q D Q^T$.

Solution.

- **a)** The size and rank of *A* can be read off from *Σ*: *A* is a 4 × 3 matrix of rank 2.
- **b)** The columns of *U* and *V* give orthonormal bases for the four subspaces.

$$
\text{Nul}(A): \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\} \qquad \text{Row}(A): \left\{ \frac{1}{\sqrt{3}} \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}, \frac{1}{\sqrt{6}} \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix} \right\}
$$

$$
\text{Col}(A): \left\{ \frac{1}{\sqrt{10}} \begin{pmatrix} 1 \\ -2 \\ 2 \\ -1 \end{pmatrix}, \frac{1}{\sqrt{15}} \begin{pmatrix} 1 \\ 3 \\ 2 \\ -1 \end{pmatrix} \right\} \qquad \text{Nul}(A^T): \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \frac{1}{\sqrt{3}} \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix} \right\}.
$$

c) We have an orthonormal basis for Col(*A*) from **b)**; putting these vectors in a matrix Q , we have $P_V = QQ^T$ for

$$
Q = \begin{pmatrix} 1/\sqrt{10} & 1/\sqrt{15} \\ -2/\sqrt{10} & 3/\sqrt{15} \\ 2/\sqrt{10} & 2/\sqrt{15} \\ -1/\sqrt{10} & -1/\sqrt{15} \end{pmatrix}
$$

d) This is the vector form of the SVD:

$$
A = 3 \cdot \frac{1}{\sqrt{10}} \begin{pmatrix} 1 \\ -2 \\ 2 \\ -1 \end{pmatrix} \cdot \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & -1 & 1 \end{pmatrix} + 2 \cdot \frac{1}{\sqrt{15}} \begin{pmatrix} 1 \\ 3 \\ 2 \\ -1 \end{pmatrix} \cdot \frac{1}{\sqrt{6}} \begin{pmatrix} -1 & -2 & -1 \end{pmatrix}
$$

e) We can take

ke
\n
$$
Q = \begin{pmatrix}\n1/\sqrt{3} & -1/\sqrt{6} & -1/\sqrt{2} \\
-1/\sqrt{3} & -2/\sqrt{6} & 0 \\
1/\sqrt{3} & -1/\sqrt{6} & 1/\sqrt{2}\n\end{pmatrix} \qquad D = \begin{pmatrix} 9 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 0 \end{pmatrix}.
$$

Problem 2. [20 points]

Consider the symmetric matrix

$$
S = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \end{pmatrix}.
$$

- **a**) Find an orthogonal matrix Q and a diagonal matrix D such that $S = QDQ^T$.
- **b)** Which of these adjectives describe *S*?
	- positive-definite
	- positive-semidefinite
	- negative-definite
	- negative-semidefinite
	- indefinite
- **c)** Write the singular value decomposition of *S* in matrix form.
- **d**) Find the maximum value of the quadratic form $q(x) = x^T S x$ subject to $||x|| = 1$. At which vectors is this value obtained?

Solution.

a) First we compute the eigenvalues of *S*. We find the characteristic polynomial by expanding cofactors along the first column:

$$
p(\lambda) = \det \begin{pmatrix} 1 - \lambda & 0 & 2 \\ 0 & -1 - \lambda & -2 \\ 2 & -2 & -\lambda \end{pmatrix}
$$

= $(1 - \lambda) \det \begin{pmatrix} -1 - \lambda & -2 \\ -2 & -\lambda \end{pmatrix} + 2 \det \begin{pmatrix} 0 & 2 \\ -1 - \lambda & -2 \end{pmatrix}$
= $(1 - \lambda) [(-1 - \lambda)(-\lambda) - 4] + 2[-2(-1 - \lambda)]$
= $(1 - \lambda)(\lambda^2 + \lambda - 4) - 4(-1 - \lambda)$
= $\lambda^2 + \lambda - 4 - \lambda^3 - \lambda^2 + 4\lambda + 4 + 4\lambda$
= $-\lambda^3 + 9\lambda = -\lambda(\lambda - 3)(\lambda + 3).$

The eigenvalues are 0 and ± 3 ; we compute eigenvectors:

$$
\lambda = 3: S - 3I = \begin{pmatrix} -2 & 0 & 2 \\ 0 & -4 & 2 \\ 2 & -2 & -3 \end{pmatrix} \xrightarrow{\text{RREF}} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\text{www}} \quad v_1 = \frac{1}{3} \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}
$$

\n
$$
\lambda = -3: S + 3I = \begin{pmatrix} 4 & 0 & 2 \\ 0 & 2 & 2 \\ 2 & -2 & 3 \end{pmatrix} \xrightarrow{\text{RREF}} \begin{pmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\text{www}} \quad v_2 = \frac{1}{3} \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}
$$

\n
$$
\lambda = 0: S - 0I = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \end{pmatrix} \xrightarrow{\text{RREF}} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\text{www}} \quad v_3 = \frac{1}{3} \begin{pmatrix} -2 \\ -2 \\ 1 \end{pmatrix}
$$

Hence $S = QDQ^T$ for

$$
Q = \frac{1}{3} \begin{pmatrix} 2 & -1 & -2 \\ -1 & 2 & -2 \\ 2 & 2 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
$$

- **b)** *S* has a positive and a negative eigenvalue, so it is indefinite.
- **c)** The singular values of *S* are the absolute values of the nonzero eigenvalues: σ_1 = σ_2 = 3. We have

$$
3v_1 = Sv_1 = \sigma_1 u_1 \implies u_1 = v_1
$$

$$
-3v_2 = Sv_2 = \sigma_2 u_2 \implies u_2 = -v_2.
$$

We can take $u_3 = v_3$ as our orthonormal basis of $\text{Nul}(S) = \text{Nul}(S^T)$, so

$$
S = \frac{1}{3} \begin{pmatrix} 2 & 1 & -2 \\ -1 & -2 & -2 \\ 2 & -2 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix} \frac{1}{3} \begin{pmatrix} 2 & -1 & -2 \\ -1 & 2 & -2 \\ 2 & 2 & 1 \end{pmatrix}^T.
$$

d) The maximum value is $\lambda_1 = 3$. It is achieved at $\pm v_1 = \pm \frac{1}{3}$ $\frac{1}{3}(2,-1,2).$

Problem 3. [20 points]

Consider the difference equation $v_{n+1} = Av_n$ for

$$
A = \begin{pmatrix} 2 & -1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}.
$$

- **a**) Find a closed formula for $A^n v_0$ for $v_0 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ ¹₂). What happens when $n \to \infty$?
- **b**) In the diagram, *draw and label* the eigenspaces of *A*, and draw the vectors $v_0, v_1,$ v_2, v_3, \ldots as points. (The grid lines are one unit apart, and the dot is the origin.)

[Hint: you do not have to compute $A^n v_0$ numerically to do this.]

c) Solve the system of ordinary differential equations

$$
u'_1 = 2u_1 - u_2 \t u_1(0) = 1
$$

$$
u'_2 = \frac{3}{2}u_1 - \frac{1}{2}u_2 \t u_2(0) = 2.
$$

Solution.

a) The characteristic polynomial of *A* is

$$
p(\lambda) = \lambda^2 - \text{Tr}(A)\lambda + \det(A) = \lambda^2 - \frac{3}{2}\lambda + \frac{1}{2} = (\lambda - 1)\left(\lambda - \frac{1}{2}\right).
$$

The eigenvalues are $\lambda_1=1$ and $\lambda_2=\frac{1}{2}$ $\frac{1}{2}$. We compute eigenvectors:

$$
A - 1I = \begin{pmatrix} 1 & -1 \\ - & - \end{pmatrix} \xrightarrow{\text{wtwo}} \quad w_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}
$$

$$
A - \frac{1}{2}I = \begin{pmatrix} \frac{3}{2} & -1 \\ - & - \end{pmatrix} \xrightarrow{\text{wtwo}} \quad w_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}
$$

Hence $A = CDC^{-1}$ for

$$
C = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}.
$$

We eyeball $v_0 = -w_1 + w_2$, so

$$
A^n v_0 = -w_1 + \frac{1}{2^n} w_2.
$$

This approaches $-w_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ $\begin{array}{c} -1\\ -1 \end{array}$ as $n \to \infty$.

b) The eigenspaces are spanned by w_1 and w_2 .

c) We need to solve $u' = Au$ for $u(0) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ v_0^1 = v_0 and *A* as above. We have $u(0)$ = $-w_1 + w_2$, so the solution is

$$
u(t) = -e^t w_1 + e^{t/2} w_2 \quad \Longrightarrow \quad \begin{array}{c} u_1 = -e^t + 2e^{t/2} \\ u_2 = -e^t + 3e^{t/2} \end{array}
$$

Problem 4. [20 points]

All of the following statements are false. Provide a counterexample to each. You need not justify your answers.

- **a)** The singular values of a diagonalizable, invertible 2×2 matrix are the absolute values of the eigenvalues.
- **b)** If *S* is symmetric, then either *S* or −*S* is positive-semidefinite.
- **c**) If $A = \begin{pmatrix} -1 & 2 \\ -3 & 4 \end{pmatrix}$ and $x \neq 0$, then $||A^n x|| \rightarrow \infty$ as $n \rightarrow \infty$.
- **d**) If λ is an eigenvalue of AA^T , then λ is an eigenvalue of A^TA .
- **e)** Any invertible matrix is diagonalizable.

Solution.

a) The matrix $A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$ has eigenvalues 1 and 2, so it is invertible and diagonalizable. However,

$$
A^T A = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 5 \end{pmatrix}
$$

has characteristic polynomial $p(\lambda) = \lambda^2 - \text{Tr}(A)\lambda + \det(A) = \lambda^2 - 6\lambda + 4$; we have $p(1^2) = -1$ and $p(2^2) = -4$, so neither 1 nor 2 is a singular value of *A*.

b) Any symmetric matrix *S* with both positive and negative eigenvalues works:

$$
S = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
$$

- **c**) The characteristic polynomial if *A* is $p(\lambda) = \lambda^2 3\lambda + 2 = (\lambda 1)(\lambda 2)$. An eigenvector with eigenvalue 1 is $x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\binom{1}{1}$; for this vector, we have $A^n x = x$, so the length does not grow.
- **d**) This can only be false for $\lambda = 0$. Zero is an eigenvalue of A^TA (resp. AA^T) if and only if *A* has linearly dependent columns (resp. rows), so we need to find a matrix with linearly independent columns and linearly dependent rows. For instance:

$$
A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}.
$$

e) The shear matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is invertible but not diagonalizable.

Problem 5. [16 points]

All of the following statements are true. Explain why in a sentence or two.

- **a)** If *A* is a 3 × 3 matrix that has eigenvalues 1 and −1, both of algebraic multiplicity one, then *A* is diagonalizable (over the real numbers).
- **b**) Let *V* be a subspace of \mathbf{R}^n and let P_V be the matrix for projection onto *V*. Then P_V is diagonalizable.
- **c)** Any eigenvector of *A* with nonzero eigenvalue is contained in the column space of *A*.
- **d)** A positive definite symmetric matrix has positive numbers on the main diagonal.

Solution.

- **a)** The third eigenvalue is also a real number with multiplicity one.
- **b)** The 1-eigenspace of P_V is V , and the 0-eigenspace is V^\perp . The geometric multiplicities add to *n* because dim(*V*) + dim(*V*^{\perp}) = *n*. Alternatively, P_V is symmetric, so it is diagonalizable by the spectral theorem.
- **c**) If $Ax = \lambda x$ for $\lambda \neq 0$ then $x = A\frac{1}{\lambda}$ $\frac{1}{\lambda}x$ is a linear combination of the columns of *A*.
- **d**) The (i, i) entry of a matrix *S* is e_i^T *i Seⁱ* , which is positive if *S* is positive definite.

Problem 6. [10 points]

Draw a picture of the ellipse defined by the equation

$$
30x_1^2 + 35x_2^2 + 12x_1x_2 = 1.
$$

Be precise! Label your major and minor axes and radii.

Solution.

First we diagonalize the quadratic form $q(x_1, x_2) = 30x_1^2 + 35x_2^2 + 12x_1x_2$. We have $q(x) = x^T S x$ for $S = \left(\begin{smallmatrix} 30 & 6 \ 6 & 35 \end{smallmatrix} \right);$ this matrix has orthogonal diagonalization $S = Q D Q^T$ for $Q = \frac{1}{\sqrt{1}}$ $\frac{1}{13}$ $\left(\frac{2}{3}, \frac{3}{-2}\right)$ and $D = \left(\frac{39}{0}, \frac{0}{26}\right)$. Hence our ellipse is obtained from the standard ellipse $39y_1^2 + 26y_2^2 = 1$ by multiplication by *Q*.

