Homework #1

due Tuesday, August 25, at 11:59pm

1. Draw the vectors

$$v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad w = \begin{pmatrix} -2 \\ 1 \end{pmatrix}, \quad v + w, \quad v + 2w, \quad \text{and} \quad v - w$$

in a single xy-plane. What values of a and b make this equation true?

$$av + bw = \begin{pmatrix} 0\\ 3 \end{pmatrix}$$

2. Consider the vectors

$$v = \begin{pmatrix} 2\\ 1 \end{pmatrix}, \quad w = \begin{pmatrix} -1\\ 1 \end{pmatrix}.$$

Draw the nine linear combinations cv + dw (c, d = 0, 1, 2) in the *xy*-plane.

3. Certain vectors v, w in \mathbb{R}^2 are drawn below. Express each of b_1, b_2, b_3, b_4, b_5 as a linear combination of v, w.

4. If

$$v + w = \begin{pmatrix} -4\\ 1 \end{pmatrix}$$
 and $v - w = \begin{pmatrix} 2\\ 3 \end{pmatrix}$,

compute and draw the vectors v and w.

5. Consider the vectors

$$u = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \quad v = \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix} \quad w = \begin{pmatrix} 8 \\ -6 \\ -2 \end{pmatrix}.$$

- **a)** Compute u + v + w and u + 2v w.
- **b)** Find numbers x and y such that w = xu + yv.

- **c)** Explain why every linear combination of *u*, *v*, *w* is also a linear combination of *u* and *v* only.
- **d)** The sum of the coordinates of any linear combination of *u*, *v*, *w* is equal to ____?
- e) Find a vector in \mathbf{R}^3 that is *not* a linear combination of u, v, w.
- **6.** Consider the vectors

$$u = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad v = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Draw a picture of all of the linear combinations au + bv for real numbers a, b satisfying $0 \le a \le 1$ and $0 \le b \le 1$.

7. Consider the vectors pointing towards the numbers on a clock:

- a) What is the sum of all twelve of these vectors?
- b) If the 2:00 vector is removed, why do the remaining vectors add to 8:00?
- **8.** Find two *different* triples (x, y, z) such that

$$x \begin{pmatrix} 1 \\ 2 \end{pmatrix} + y \begin{pmatrix} 1 \\ -2 \end{pmatrix} + z \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}.$$

How many such triples are there?

- **9.** Decide if each statement is true or false, and explain why.
 - **a)** The vector $\frac{1}{2}v$ is a linear combination of v and w.

b)
$$\begin{pmatrix} 0\\0\\0 \end{pmatrix} = \begin{pmatrix} 0\\0 \end{pmatrix}$$
.

c) If v, w are two vectors in \mathbb{R}^2 , then any other vector b in \mathbb{R}^2 is a linear combination of v and w.

10. Consider the following vectors:

$$u = \begin{pmatrix} -.6 \\ .8 \end{pmatrix} \quad v = \begin{pmatrix} 4 \\ 3 \end{pmatrix} \quad w = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

- **a)** Compute the lengths ||u||, ||v||, and ||w||.
- **b)** Compute the lengths ||2u||, ||-v||, and ||3w||.
- **c)** Find the unit vectors in the directions of *u*, *v*, and *w*.
- **d)** Compute the dot products $u \cdot v, u \cdot w$, and $v \cdot w$. Verify that they are the same as $v \cdot u, w \cdot u$, and $w \cdot v$, respectively.
- e) Check the Schwartz inequalities $|u \cdot v| \le ||u|| ||v||$ and $|v \cdot w| \le ||v|| ||w||$.
- **f)** Find the angles between *u* and *v* and between *v* and *w*.
- **g)** Find the distance from *v* to *w*.
- **h)** Find unit vectors u', v', w' orthogonal to u, v, w, respectively.
- **11.** Suppose that *v* and *w* are *unit* vectors. Compute the following dot products (your answers will be actual numbers):

a) $v \cdot (-v)$ **b)** $(v+w) \cdot (v-w)$ **c)** $(v+2w) \cdot (v-2w)$.

- **12.** Decide if each statement is true or false, and explain why.
 - a) If u = (1, 1, 1) is orthogonal to v and to w, then v is parallel to w.
 - **b)** If *u* is orthogonal to v + w and to v w, then *u* is orthogonal to *v* and *w*.
 - c) If *u* and *v* are orthogonal unit vectors then $||u v|| = \sqrt{2}$.
 - **d)** If $||u||^2 + ||v||^2 = ||u + v||^2$, then *u* and *v* are orthogonal.
- **13.** Find nonzero vectors *v* and *w* that are orthogonal to (1, 1, 1) and to each other.
- **14.** What is the length of the vector v = (1, 1, ..., 1) in *n* dimensions?
- **15.** If ||v|| = 5 and ||w|| = 3, what are the smallest and largest possible values of ||v-w||? What are the smallest and largest possible values of $v \cdot w$? Justify your answer using the algebra of dot products.
- **16.** a) If $v \cdot w < 0$, what does that say about the angle between *v* and *w*?
 - **b)** Find three vectors u, v, w in the *xy*-plane such that $u \cdot v < 0$, $u \cdot w < 0$, and $v \cdot w < 0$.

17. Compute the following matrix-vector products. If the product is not defined, explain why.

$$\begin{pmatrix} -4 & 2\\ 1 & 6\\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3\\ -2\\ 7 \end{pmatrix} \begin{pmatrix} 2\\ 6\\ -1 \end{pmatrix} \begin{pmatrix} 5\\ -1 \end{pmatrix} \begin{pmatrix} 6 & 5\\ -4 & -3\\ 7 & 6 \end{pmatrix} \begin{pmatrix} 2\\ -3 \end{pmatrix}$$
$$\begin{pmatrix} 8 & 3 & -4\\ 5 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix} (2 & 6 & -1) \begin{pmatrix} 5\\ -1\\ 0 \end{pmatrix} \begin{pmatrix} 5\\ -1\\ 0 \end{pmatrix} (2 & 6 & -1)$$

18. Suppose that u = (x, y, z) and v = (a, b, c) are vectors satisfying 2u + 3v = 0. Find a nonzero vector *w* in **R**² such that

$$\begin{pmatrix} x & a \\ y & b \\ z & c \end{pmatrix} w = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

19. Consider the matrices

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 4 & -4 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 5 & 3 & 2 \\ 1 & -1 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$$
$$D = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \qquad E = \begin{pmatrix} -3 & 5 \end{pmatrix}.$$

Compute the following expressions. If the result is not defined, explain why.

a) – 3A	b) <i>B</i> – 3 <i>A</i>	c) <i>AC</i>
d) A + 2B	e) <i>C</i> − <i>E</i>	f) EB

20. Consider the matrices

$$A = \begin{pmatrix} 2 & 5 \\ -3 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 4 & -5 \\ 3 & k \end{pmatrix}.$$

What value(s) of *k*, if any, will make AB = BA?

21. Consider the matrices

$$A = \begin{pmatrix} 2 & -3 \\ -4 & 6 \end{pmatrix} \qquad B = \begin{pmatrix} 8 & 4 \\ 5 & 5 \end{pmatrix} \qquad C = \begin{pmatrix} 5 & -2 \\ 3 & 1 \end{pmatrix}.$$

Verify that AB = AC and yet $B \neq C$.

22. In the table below, a linear system is expressed as a system of equations, as a matrix equation, or as an augmented matrix. Fill in the blank entries.

System of Equations

Matrix Equation

Augmented Matrix

 $3x_{1} + 2x_{2} + 4x_{3} = 9$ -x₁ + 4x₃ = 2 $\begin{pmatrix} 3 & -5 \\ 2 & 4 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 & 1 & 1 & | & 2 \\ 0 & 3 & -1 & -2 & | & 4 \\ 1 & -3 & -4 & -3 & | & 2 \\ 6 & 5 & -1 & -8 & | & 1 \end{pmatrix}$

23. Which of the following matrices are not in row echelon form? Why not?

$$\begin{pmatrix} 1 & 3 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 4 \end{pmatrix} \begin{pmatrix} 3 & 0 & 1 & 0 \\ 1 & 0 & 2 & 3 \\ 0 & 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} 2 & 3 & 4 & 1 \\ 0 & 9 & 3 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 & 4 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 & 2 & 4 \\ 0 & 2 & 4 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 & 4 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 & 4 \\ 0 & 0 \end{pmatrix}$$

24. Consider the following system of equations:

$$\begin{aligned} x_1 - 2x_2 + x_3 &= 1 \\ -2x_1 + 5x_2 + 5x_3 &= 2 \\ 3x_1 - 6x_2 - 7x_3 &= 3. \end{aligned}$$

- **a)** Use row operations to eliminate x_1 from all but the first equation.
- **b)** Use row operations to modify the system so that x_2 only appears in the first and second equations (and x_1 still only appears in the first).
- **c)** Solve for x_3 , then for x_2 , then for x_1 . What is the solution?
- **25.** The matrix below can be transformed into row echelon form using exactly two row operations. What are they?

$$\begin{pmatrix} 2 & 4 & -2 & 4 \\ -1 & -2 & 1 & -2 \\ 0 & 2 & 0 & 3 \end{pmatrix}$$