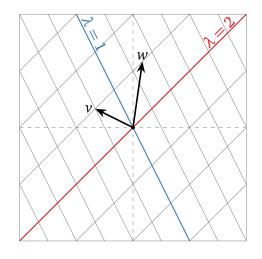
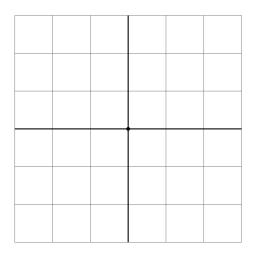
Homework #10

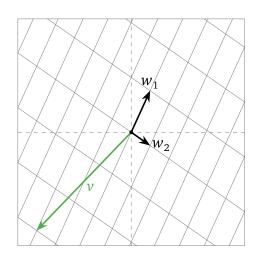
due Tuesday, October 27, at 11:59pm

- **1.** A certain 2×2 matrix *A* has eigenvalues 1 and 2. The eigenspaces are shown in the picture below.
 - **a)** Draw Av, A^2v , and Aw.
 - **b)** Describe what happens to $A^n v$ as $n \to \infty$.



- **2.** A certain diagonalizable 2 × 2 matrix *A* is equal to CDC^{-1} , where *C* has columns w_1, w_2 pictured below, and $D = \begin{pmatrix} 1/3 & 0 \\ 0 & 1/2 \end{pmatrix}$.
 - **a)** Draw $C^{-1}v$ on the left.
 - **b)** Draw $DC^{-1}v$ on the left.
 - **c)** Draw $Av = CDC^{-1}v$ on the right.
 - **d)** What happens to $A^n v$ as $n \to \infty$?





3. Compute the following complex numbers.

a)
$$(1+i) + (2-i)$$
 b) $(1+i)(2-i)$ c) $\overline{2-i}$ d) $\frac{1+i}{2-i}$
e) $|1+i|$ f) $2e^{2\pi i/3}$ g) $5e^{3\pi i}$

4. Express each complex number in polar coordinates $re^{i\theta}$.

a)
$$1+i$$
 b) $\frac{-1+i\sqrt{3}}{2}$ **c)** $-\sqrt{3}-3i$ **d)** $\frac{1}{1+i}$ **e)** $(1-i\sqrt{3})^n$

- **5.** For which numbers θ is $e^{i\theta} = 1$? What about -1?
- **6.** For each matrix *A* and each vector *x*, decide if *x* is an eigenvector of *A*, and if so, find the eigenvalue λ .

a)
$$\begin{pmatrix} 2 & 3 \\ -3 & 2 \end{pmatrix}$$
, $\begin{pmatrix} i \\ 1 \end{pmatrix}$ b) $\begin{pmatrix} -4 & 13 & 13 \\ 2 & -2 & -4 \\ -4 & 8 & 10 \end{pmatrix}$, $\begin{pmatrix} 1+5i \\ -2i \\ 4i \end{pmatrix}$
c) $\begin{pmatrix} 1 & 1 & 1 \\ -1 & -3 & -3 \\ -2 & 0 & -1 \end{pmatrix}$, $\begin{pmatrix} 2+i \\ 1 \\ -i \end{pmatrix}$

Careful! It is difficult to recognize by inspection if two complex vectors are (complex) scalar multiples of each other.

7. For each 2×2 matrix *A*, **i**) compute the characteristic polynomial, **ii**) find all (real and complex) eigenvalues, and **iii**) find a basis for each eigenspace, using Problem 3 on Homework 9 when applicable. **iv**) Is the matrix diagonalizable (over the complex numbers)? If so, find an invertible matrix *C* and a diagonal matrix *D* such that $A = CDC^{-1}$.

a)
$$\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$ c) $\begin{pmatrix} -3 & 5 \\ -10 & 7 \end{pmatrix}$

8. Diagonalize the following matrix over the complex numbers:

$$A = \begin{pmatrix} 1 & 4 & -6 \\ -6 & 7 & -22 \\ -2 & 1 & -5 \end{pmatrix}.$$

One eigenvalue is $\lambda = -1$.

9. A certain forest contains a population of rabbits and a population of foxes. If there are r_n rabbits and f_n foxes in year n, then

$$r_{n+1} = 3r_n - f_n$$

 $f_{n+1} = r_n + 2f_n$:

in other words, each rabbit produces three baby rabbits on average, but there is some loss due to predation by foxes; each fox produces two babies on average, but this is increased with ample prey.

- **a)** Let $v_n = \binom{r_n}{f_n}$. Find a matrix *A* such that $v_{n+1} = Av_n$.
- b) Find an eigenbasis of *A*. (The eigenvectors and eigenvalues will be complex.)[Hint: Part c) will be easier if you choose the eigenvectors with first coordinate equal to 1.]
- **c)** Suppose that $r_0 = 2$ and $f_0 = 1$. Find closed formulas for r_n and f_n . Find a formula for r_n involving only real numbers. (This latter formula can involve an arctan.)
- **d)** In this model, the populations do not stabilize. How many years will it take for the foxes to eat all of the rabbits?

In general, any 2×2 difference equation with a complex eigenvalue will exhibit oscillation centered at zero. This phenomenon can be described explicitly, but is beyond the scope of this course.

- **10.** Solve the following initial value problems. Your solutions should involve only real numbers.
 - **a)** $\begin{cases} u_1' = u_1 2u_2 & u_1(0) = -3 \\ u_2' = u_1 + 4u_2 & u_2(0) = 2 \end{cases}$ **b)** $\begin{cases} u_1' = 3u_1 u_2 & u_1(0) = 4 \\ u_2' = u_1 + 2u_2 & u_2(0) = 2 \end{cases}$
- 11. a) Let A be an $n \times n$ matrix. Prove that λ is an eigenvalue of A with geometric multiplicity n if and only if $A = \lambda I_n$.
 - **b)** Find a non-diagonal 2×2 matrix such that 1 is an eigenvalue with algebraic multiplicity 2.
- **12.** Find examples of real 2×2 matrices *A* with the following properties.
 - a) *A* is invertible and diagonalizable over the real numbers.
 - **b)** *A* is invertible but not diagonalizable over the complex numbers.
 - c) A is diagonalizable over the real numbers but not invertible.
 - **d)** *A* is neither invertible nor diagonalizable over the complex numbers.

This shows that invertibility and diagonalizability have nothing to do with each other.

- **13.** Let *A* be an $n \times n$ matrix.
 - a) Show that the product of the (real and complex) eigenvalues, counted with algebraic multiplicity, is equal to det(*A*).
 - **b)** [**Optional**] Show that the sum of the (real and complex) eigenvalues, counted with algebraic multiplicity, is equal to Tr(*A*).

(Both of these are identities involving the characteristic polynomial of A.)

14. Let *L* be a line in \mathbb{R}^3 , let P_L be orthogonal projection onto *L*, and let $R_L = I_3 - 2P_L$ be the reflection over the orthogonal plane.

a) Prove that there exists an invertible 3×3 matrix *C* such that

$$P_L = C \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} C^{-1}.$$

Use this to show that the characteristic polynomial of P_L is $-\lambda^2(\lambda - 1)$.

b) Prove that

$$R_L = C \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} C^{-1}$$

for the same matrix *C* of part **a**). Use this to show that the characteristic polynomial of R_L is $-(\lambda - 1)^2(\lambda + 1)$ and that $\det(R_L) = -1$. (Compare Problem 10 on Homework 8.)

- **15.** For each matrix in Problem 5(a)–(c) on Homework 9, compute the algebraic and geometric multiplicity of each eigenvalue. What does your answer say about diagonalizability? **Optional:** do (d)–(g) as well.
- **16.** Give an example of each of the following, or explain why no such example exists. All matrices should have real entries.
 - a) A 3×3 matrix with eigenvalues 0, 1, 2, and corresponding eigenvectors

(1)	$\begin{pmatrix} 1 \end{pmatrix}$	(1)
1 ,	-1,	$\left(0 \right)$.
(1)		(1)

- **b)** A 4 × 4 matrix having eigenvalue 2 with algebraic multiplicity 2 and geometric multiplicity 3.
- c) A 3×3 matrix with one complex eigenvalue and two real eigenvalues.
- d) A 2 × 2 matrix A such that A² is diagonalizable over the real numbers but A is not diagonalizable, even over the complex numbers.
 [Hint: try a nonzero matrix A such that A² = 0.]
- **17.** Decide if each statement is true or false, and explain why.
 - **a)** If *A* and *B* are diagonalizable $n \times n$ matrices, then so is *AB*.
 - **b)** An $n \times n$ matrix with *n* (different) eigenvalues is diagonalizable.
 - c) An $n \times n$ matrix is diagonalizable if it has n eigenvalues, counted with algebraic multiplicity.
 - d) Any 2×2 real matrix with a (non-real) complex eigenvalue is diagonalizable over the complex numbers.

- e) Any 3 × 3 real matrix with a (non-real) complex eigenvalue is diagonalizable over the complex numbers.
- **f)** Any 4 × 4 real matrix with a (non-real) complex eigenvalue is diagonalizable over the complex numbers.
- **g)** Any 2×2 real matrix has a real eigenvalue.
- **h)** Any 3 × 3 real matrix has a real eigenvalue.
- i) Any $n \times n$ matrix has a (real or complex) eigenvalue.
- **j**) If the characteristic polynomial of *A* is $-(\lambda^3 1) = -(\lambda^2 + \lambda + 1)(\lambda 1)$, then the 1-eigenspace of *A* is a line.