Homework #11

due Thursday, November 5, at 11:59pm

1. For each symmetric matrix *S*, find an orthogonal matrix *Q* and a diagonal matrix *D* such that $S = QDQ^{T}$.

a)
$$\begin{pmatrix} 1 & -3 \\ -3 & 1 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & -3 \\ -3 & 9 \end{pmatrix}$ c) $\begin{pmatrix} 14 & 2 \\ 2 & 11 \end{pmatrix}$
d) $\begin{pmatrix} 7 & 2 & 0 \\ 2 & 6 & 2 \\ 0 & 2 & 5 \end{pmatrix}$ e) $\begin{pmatrix} 1 & -8 & 4 \\ -8 & 1 & 4 \\ 4 & 4 & 7 \end{pmatrix}$

The eigenvalues in **d**) are 3, 6, 9 and in **e**) are -9, 9.

2. For each matrix *S* of Problem 1, decide if *S* is positive-semidefinite, and if so, compute its positive-semidefinite square root $\sqrt{S} = Q\sqrt{D}Q^T$. Verify that $(\sqrt{S})^2 = S$.

Remark: Since \sqrt{S} is also symmetric, we have $S = \sqrt{S^T} \sqrt{S}$, so this is another way to factorize a positive-semidefinite matrix as $A^T A$.

3. Consider the matrix

$$S = \begin{pmatrix} 7 & 2 & 0 \\ 2 & 6 & 2 \\ 0 & 2 & 5 \end{pmatrix}$$

of Problem 1(d). Write *S* in the form $\lambda_1 q_1 q_1^T + \lambda_2 q_2 q_2^T + \lambda_3 q_3 q_3^T$ for numbers $\lambda_1, \lambda_2, \lambda_3$ and orthonormal vectors q_1, q_2, q_3 .

[Hint: Use the columns of *Q*. Why does this work?]

4. Find all possible orthogonal diagonalizations

$$\frac{1}{5} \begin{pmatrix} 41 & 12 \\ 12 & 34 \end{pmatrix} = QDQ^T.$$

- **5.** Suppose that *A* is a square matrix such that $A^k = 0$ for some k > 0.
 - a) Show that 0 is the only eigenvalue of *A*.
 - **b)** Show that A = 0 if it is symmetric.
- **6.** Let *S* be a symmetric orthogonal 2×2 matrix.
 - **a)** Show that $S = \pm I_2$ if it has only one eigenvalue.
 - **b)** Suppose that *S* has two eigenvalues. Show that *S* is the matrix for the reflection over a line *L* in \mathbb{R}^2 . (Recall that the reflection over a line *L* is given by $R_L = I_2 2P_{L^{\perp}}$.)

[**Hint:** Write *S* as $\lambda_1 q_1 q_1^T + \lambda_2 q_2 q_2^T$, and use the projection formula to write I_2 and $P_{L^{\perp}}$ in this form as well.]

7. a) Let *S* be a diagonalizable (over **R**) $n \times n$ matrix with orthogonal eigenspaces: that is, eigenspaces with different eigenvalues are orthogonal subspaces. Prove that *S* is symmetric.

[Hint: choose orthonormal bases for each eigenspace.]

b) Let *S* be a matrix that can be written in the form

$$S = \lambda_1 q_1 q_1^T + \lambda_2 q_2 q_2^T + \dots + \lambda_n q_n q_n^T$$

for some vectors q_1, q_2, \ldots, q_n . Prove that S is symmetric.

- c) Let V be a subspace of \mathbb{R}^n , and let P_V be the projection matrix onto V. Use a) or b) to prove that P_V is symmetric. (Compare Problem 8 on Homework 6.)
- **8.** For each symmetric matrix *S*, decide if *S* is positive-definite. If so, find its LDL^{T} and Cholesky decompositions. Do not compute any eigenvalues!

a) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1\\ 3 \end{pmatrix}$		b)	$\begin{pmatrix} 1\\ 2\\ 0 \end{pmatrix}$	2 5 —1	0 —1 3		c)	$ \begin{pmatrix} 3 \\ -2 \\ 2 \end{pmatrix} $	-2 4 0	$\begin{pmatrix} 2\\0\\2 \end{pmatrix}$
d)	$\begin{pmatrix} 1\\1\\2\\1 \end{pmatrix}$	1 3 6 3	2 6 14 8	$\begin{pmatrix} 1\\ 3\\ 8\\ 9 \end{pmatrix}$		e)	$\begin{pmatrix} -1\\2\\3\\-2 \end{pmatrix}$	2 -3 -8 4	3 8 4 6	$\begin{pmatrix} -2 \\ 4 \\ 6 \\ -1 \end{pmatrix}$	

9. For which matrices *A* is $S = A^T A$ positive-definite? If *S* is not positive-definite, find a vector *x* such that $x^T S x = 0$. In any case, do not compute *S*!

	(1 1)		(1	ი	0)		(1	2	3 \	
a)	$\begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 0 & 3 \end{pmatrix}$		b)	$\begin{pmatrix} 1\\ 1 \end{pmatrix}$	2 1	$\begin{pmatrix} 0\\ 3 \end{pmatrix}$	c)	4	5	$\begin{pmatrix} 3\\6\\9 \end{pmatrix}$	
	$\begin{pmatrix} 0 & 3 \end{pmatrix}$)		•				$\langle \rangle$	ð	9)	

10. a) For each symmetric matrix *S*, compute the associated quadratic form $q(x) = x^T S x$.

$(1 \ 2)$	(0, 1)	(1	03)
$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	0	$\begin{pmatrix} 0 & 3 \\ -1 & 1 \\ 1 & 0 \end{pmatrix}$
$\begin{pmatrix} 2 & 1 \end{pmatrix}$		(3	10/

- **b)** Let *A* be a square matrix and let $S = \frac{1}{2}(A + A^T)$. Show that *S* is symmetric and that $x^T A x = x^T S x$. (This is why we only consider symmetric matrices when studying quadratic forms.)
- **11.** For each quadratic form $q(x_1, x_2)$, **i**) write q(x) in the form $x^T S x$ for a symmetric matrix *S*, **ii**) find coordinates y_1, y_2 such that $q(x) = \lambda_1 y_1^2 + \lambda_2 y_2^2$, **iii**) draw the solutions of $q(x_1, x_2) = 1$, being sure to draw the shortest and longest solutions, and **iv**) find the maximum and maximum values of $q(x_1, x_2)$ subject to the constraint

 $x_1^2 + x_2^2 = 1$, and at which points (x_1, x_2) these values are attained.

a)
$$q(x_1, x_2) = 14x_1^2 + 4x_1x_2 + 11x_2^2$$
 b) $q(x_1, x_2) = \frac{1}{10}(21x_1^2 - 6x_1x_2 + 29x_2^2)$
c) $q(x_1, x_2) = x_1^2 - 6x_1x_2 + x_2^2$

[**Hint:** An equation of the form $(x_1/r_1)^2 - (x_2/r_2)^2 = 1$ defines a hyperbola.]

12. For the quadratic form

$$q(x_1, x_2, x_3) = 7x_1^2 + 6x_2^2 + 5x_3^2 + 4x_1x_2 + 4x_2x_3,$$

find coordinates y_1, y_2, y_3 such that $q(x) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \lambda_3 y_3^2$, and find the maximum and minimum values of $q(x_1, x_2, x_3)$ subject to the constraint $x_1^2 + x_2^2 + x_3^2 = 1$, along with the points (x_1, x_2, x_3) at which these values are attained.

- **13.** a) If S is positive-definite and C is invertible, show that CSC^T is positive-definite.
 - **b)** If *S* and *T* are positive-definite, show that S + T is positive-definite.
 - c) If S is positive-definite, show that S is invertible and that S^{-1} is positive-definite.

[**Hint:** For **a**) and **b**) use the positive-energy characterization of positive-definiteness; for **c**) use the positive-eigenvalue characterization.]

- **14.** Let *S* be a positive-definite matrix.
 - a) Show that the diagonal entries of *S* are positive.
 [Hint: compute e^T_iSe_i.]
 - **b)** Show that the diagonal entries of *S* are all greater than or equal to the smallest eigenvalue of *S*.

[**Hint:** if not, apply **a**) to $S - aI_n$ for a diagonal entry *a* that is smaller than all eigenvalues.]

- **15.** Decide if each statement is true or false, and explain why. All matrices are real.
 - **a)** A symmetric matrix is diagonalizable.
 - **b)** If A is any matrix then $A^T A$ is positive-semidefinite.
 - c) A symmetric matrix with positive determinant is positive-definite.
 - **d)** A positive-definite matrix has the form $A^T A$ for a matrix A with full column rank.
 - e) If $A = CDC^{-1}$ for a diagonal matrix *D* and a non-orthogonal invertible matrix *C*, then *A* is not symmetric.
 - f) The only positive-definite projection matrix is the identity.
 - **g)** All eigenvalues of a positive-definite symmetric matrix are positive real numbers.