Homework #11

due **Thursday**, November 5, at 11:59pm

1. For each symmetric matrix *S*, find an orthogonal matrix *Q* and a diagonal matrix *D* such that $S = QDQ^T$.

a)
$$
\begin{pmatrix} 1 & -3 \\ -3 & 1 \end{pmatrix}
$$
 b) $\begin{pmatrix} 1 & -3 \\ -3 & 9 \end{pmatrix}$ c) $\begin{pmatrix} 14 & 2 \\ 2 & 11 \end{pmatrix}$
d) $\begin{pmatrix} 7 & 2 & 0 \\ 2 & 6 & 2 \\ 0 & 2 & 5 \end{pmatrix}$ e) $\begin{pmatrix} 1 & -8 & 4 \\ -8 & 1 & 4 \\ 4 & 4 & 7 \end{pmatrix}$

The eigenvalues in **d)** are 3, 6, 9 and in **e)** are −9, 9.

2. For each matrix *S* of Problem [1,](#page-0-0) decide if *S* is positive-semidefinite, and if so, com-For each matrix *S* of Problem 1, decide if *S* is positive-semidefinite, and if so, conduction is so, conduction in the square root $\sqrt{S} = Q\sqrt{D}Q^T$. Verify that $(\sqrt{S})^2 = S$. p

Remark: Since √S is also symmetric, we have *S* = $\overline{S}^T \sqrt{}$ *S*, so this is another way to factorize a positive-semidefinite matrix as A^TA .

3. Consider the matrix

$$
S = \begin{pmatrix} 7 & 2 & 0 \\ 2 & 6 & 2 \\ 0 & 2 & 5 \end{pmatrix}
$$

of Problem [1\(](#page-0-0)d). Write *S* in the form $\lambda_1 q_1 q_1^T + \lambda_2 q_2 q_2^T + \lambda_3 q_3 q_3^T$ $\frac{1}{3}$ for numbers λ_1 , λ_2 , λ_3 and orthonormal vectors q_1 , q_2 , q_3 .

[**Hint:** Use the columns of *Q*. Why does this work?]

4. Find *all possible* orthogonal diagonalizations

$$
\frac{1}{5} \begin{pmatrix} 41 & 12 \\ 12 & 34 \end{pmatrix} = QDQ^T.
$$

- **5.** Suppose that *A* is a square matrix such that $A^k = 0$ for some $k > 0$.
	- **a)** Show that 0 is the only eigenvalue of *A*.
	- **b**) Show that $A = 0$ if it is symmetric.
- **6.** Let *S* be a symmetric orthogonal 2×2 matrix.
	- **a**) Show that $S = \pm I_2$ if it has only one eigenvalue.
	- **b)** Suppose that *S* has two eigenvalues. Show that *S* is the matrix for the reflection over a line *L* in \mathbb{R}^2 . (Recall that the reflection over a line *L* is given by $R_L =$ $I_2 - 2P_L \Box$

[Hint: Write *S* as $\lambda_1 q_1 q_1^T + \lambda_2 q_2 q_2^T$ $\frac{T}{2}$, and use the projection formula to write I_2 and $P_{L^{\perp}}$ in this form as well.]

7. a) Let *S* be a diagonalizable (over **R**) $n \times n$ matrix with orthogonal eigenspaces: that is, eigenspaces with different eigenvalues are orthogonal subspaces. Prove that *S* is symmetric.

[**Hint:** choose *orthonormal* bases for each eigenspace.]

b) Let *S* be a matrix that can be written in the form

$$
S = \lambda_1 q_1 q_1^T + \lambda_2 q_2 q_2^T + \cdots + \lambda_n q_n q_n^T
$$

for some vectors q_1, q_2, \ldots, q_n . Prove that *S* is symmetric.

- **c**) Let *V* be a subspace of \mathbb{R}^n , and let P_V be the projection matrix onto *V*. Use **a**) or **b)** to prove that P_V is symmetric. (Compare Problem 8 on Homework 6.)
- **8.** For each symmetric matrix *S*, decide if *S* is positive-definite. If so, find its *LDL^T* and Cholesky decompositions. Do not compute any eigenvalues!

9. For which matrices *A* is $S = A^TA$ positive-definite? If *S* is not positive-definite, find a vector *x* such that $x^T S x = 0$. In any case, do not compute *S*!

10. a) For each symmetric matrix *S*, compute the associated quadratic form $q(x) =$ $x^T S x$.

$$
\begin{pmatrix}\n1 & 2 \\
2 & 1\n\end{pmatrix}\n\qquad\n\begin{pmatrix}\n0 & 1 \\
1 & 0\n\end{pmatrix}\n\qquad\n\begin{pmatrix}\n1 & 0 & 3 \\
0 & -1 & 1 \\
3 & 1 & 0\n\end{pmatrix}
$$

- **b**) Let *A* be a square matrix and let $S = \frac{1}{2}$ $\frac{1}{2}(A + A^T)$. Show that *S* is symmetric and that $x^T A x = x^T S x$. (This is why we only consider symmetric matrices when studying quadratic forms.)
- **11.** For each quadratic form $q(x_1, x_2)$, **i)** write $q(x)$ in the form $x^T S x$ for a symmetric matrix *S*, **ii**) find coordinates y_1, y_2 such that $q(x) = \lambda_1 y_1^2 + \lambda_2 y_2^2$ $_2^2$, **iii**) draw the solutions of $q(x_1, x_2) = 1$, being sure to draw the shortest and longest solutions, and iv) find the maximum and maximum values of $q(x_1, x_2)$ subject to the constraint

 $x_1^2 + x_2^2 = 1$, and at which points (x_1, x_2) these values are attained.

a)
$$
q(x_1, x_2) = 14x_1^2 + 4x_1x_2 + 11x_2^2
$$
 b) $q(x_1, x_2) = \frac{1}{10}(21x_1^2 - 6x_1x_2 + 29x_2^2)$
c) $q(x_1, x_2) = x_1^2 - 6x_1x_2 + x_2^2$

[**Hint:** An equation of the form $(x_1/r_1)^2 - (x_2/r_2)^2 = 1$ defines a [hyperbola.](https://en.wikipedia.org/wiki/Hyperbola#Hyperbola_as_an_affine_image_of_the_unit_hyperbola_x%C2%B2_%E2%88%92_y%C2%B2_=_1)]

12. For the quadratic form

$$
q(x_1, x_2, x_3) = 7x_1^2 + 6x_2^2 + 5x_3^2 + 4x_1x_2 + 4x_2x_3,
$$

find coordinates y_1, y_2, y_3 such that $q(x) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \lambda_3 y_3^2$ $\frac{2}{3}$, and find the maximum and minimum values of $q(x_1, x_2, x_3)$ subject to the constraint $x_1^2 + x_2^2 + x_3^2 = 1$, along with the points (x_1, x_2, x_3) at which these values are attained.

- **13. a)** If *S* is positive-definite and *C* is invertible, show that *C SC^T* is positive-definite.
	- **b)** If *S* and *T* are positive-definite, show that $S + T$ is positive-definite.
	- **c)** If *S* is positive-definite, show that *S* is invertible and that S^{-1} is positivedefinite.

[**Hint:** For **a)** and **b)** use the positive-energy characterization of positive-definiteness; for **c)** use the positive-eigenvalue characterization.]

14. Let *S* be a positive-definite matrix.

- **a)** Show that the diagonal entries of *S* are positive. [Hint: compute e_i^T $\int_i^T S e_i$.]
- **b)** Show that the diagonal entries of *S* are all greater than or equal to the smallest eigenvalue of *S*.

[**Hint:** if not, apply **a)** to *S* − *aIⁿ* for a diagonal entry *a* that is smaller than all eigenvalues.]

- **15.** Decide if each statement is true or false, and explain why. All matrices are real.
	- **a)** A symmetric matrix is diagonalizable.
	- **b**) If *A* is any matrix then A^TA is positive-semidefinite.
	- **c)** A symmetric matrix with positive determinant is positive-definite.
	- **d**) A positive-definite matrix has the form A^TA for a matrix A with full column rank.
	- **e)** If *^A* ⁼ *C DC*[−]¹ for a diagonal matrix *D* and a non-orthogonal invertible matrix *C*, then *A* is not symmetric.
	- **f)** The only positive-definite projection matrix is the identity.
	- **g)** All eigenvalues of a positive-definite symmetric matrix are positive real numbers.