Homework #3

due Tuesday, September 8, at 11:59pm

1. Express each system of linear equations as a vector equation. For example,

$$\begin{array}{c} x_{1} + 2x_{2} = 3\\ -x_{1} - x_{2} = 4 \end{array} \xrightarrow{x_{1} \begin{pmatrix} 1\\ -1 \end{pmatrix}} + x_{2} \begin{pmatrix} 2\\ -1 \end{pmatrix} = \begin{pmatrix} 3\\ 4 \end{pmatrix}.$$

a)
$$\begin{array}{c} 3x_{1} + 2x_{2} + 4x_{3} = 9\\ -x_{1} & + 4x_{3} = 2 \end{array}$$

b)
$$\begin{pmatrix} 3 & -5\\ 2 & 4\\ -1 & 1 \end{pmatrix} \begin{pmatrix} x_{1}\\ x_{2} \end{pmatrix} = \begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix}$$

c)
$$\begin{pmatrix} 1 & 0 & 1 & 1 & | & 2\\ 0 & 3 & -1 & -2 & | & 4\\ 1 & -3 & -4 & -3 & | & 2\\ 6 & 5 & -1 & -8 & | & 1 \end{pmatrix}$$

2. For each matrix *A* and vector *b*, find the parametric form of the general solution of Ax = b. For instance,

$$\begin{pmatrix} 1 & -1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \quad \text{we have} \quad x_1 = x_2 + 1.$$

Also answer the following questions: Which variables are free? How many solutions does the system have?

a)
$$A = \begin{pmatrix} 2 & 1 & 1 & 4 \\ 4 & 2 & 1 & 7 \end{pmatrix} \quad b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

b)
$$A = \begin{pmatrix} 2 & 2 & -1 \\ -4 & -5 & 5 \\ 6 & 1 & 12 \end{pmatrix} \qquad b = \begin{pmatrix} 3 \\ 2 \\ 49 \end{pmatrix}$$

c)
$$A = \begin{pmatrix} 2 & 2 & -1 \\ -4 & -5 & 5 \\ 6 & 1 & 12 \end{pmatrix} \qquad b = \begin{pmatrix} 3 \\ 2 \\ 48 \end{pmatrix}$$

d)
$$A = \begin{pmatrix} 1 & 2 & 3 & -1 & 1 \\ -2 & -4 & -5 & 4 & 1 \\ 1 & 2 & 2 & -3 & -1 \\ -3 & -6 & -7 & 7 & 6 \end{pmatrix} \qquad b = \begin{pmatrix} 2 \\ 4 \\ -6 \\ 10 \end{pmatrix}$$
e)
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \qquad b = \begin{pmatrix} 2 \\ 5 \\ 4 \end{pmatrix}$$

3. For each matrix *A* and vector *b* in Problem 2, find the parametric *vector* form of the general solution of Ax = b, and express the solution set in the form

$$Span\{???\} + p$$

for some vector *p*. For instance,

$$\begin{pmatrix} 1 & -1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \xrightarrow{\text{soln set}} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{array}{c} \text{soln set} \\ \text{soln set} \\$$

- **4.** For each matrix *A* in Problem 2, determine if the homogeneous equation Ax = 0 has a nontrivial solution. If it does, write the solution set of Ax = 0 as a span.
- **5.** Find values of *a* and *b* such that the following system has **a**) zero **b**) one **c**) infinitely many solutions.

$$2x + ay = 4$$
$$x - y = b$$

- **6.** The equation x + 2y = z determines a plane in \mathbb{R}^3 . (This is an *implicit equation* for the plane).
 - a) What is the coefficient matrix A for this system?
 - **b)** Which are the free variables?
 - c) Write the parametric form of the solutions of x + 2y = z. This expresses the points on the plane in terms of two *parameters*.
 - **d)** Do the same for the plane defined by 2y = z. What is different?
- 7. Give examples of matrices *A* in reduced row echelon form for which the number of solutions of Ax = b is:
 - a) 0 or 1, depending on b
 - **b)** ∞ for every *b*
 - **c)** 0 or ∞ , depending on *b*
 - **d)** 1 for every *b*.

Is there a square matrix satisfying b)? Why or why not?

8. a) Is
$$\begin{pmatrix} 3\\2\\49 \end{pmatrix}$$
 in Span $\left\{ \begin{pmatrix} 2\\-4\\6 \end{pmatrix}, \begin{pmatrix} 2\\-5\\1 \end{pmatrix}, \begin{pmatrix} -1\\5\\12 \end{pmatrix} \right\}$?
If so, express $\begin{pmatrix} 3\\2\\49 \end{pmatrix}$ as a linear combination of $\begin{pmatrix} 2\\-4\\6 \end{pmatrix}, \begin{pmatrix} 2\\-5\\1 \end{pmatrix}, \begin{pmatrix} -1\\5\\12 \end{pmatrix}$.

[**Hint:** compare Problem 2.]

b) Find a vector that is *not* in the span of the columns of $\begin{pmatrix} 2 & 2 & -1 \\ -4 & -5 & 5 \\ 6 & 1 & 12 \end{pmatrix}$.

9. Describe and compare (geometrically) the solution sets of the following systems:

$$\begin{cases} 2x_1 + x_2 + x_3 = 1 \\ 4x_1 + 2x_2 + x_3 = 1 \end{cases} \qquad \begin{cases} 2x_1 + x_2 + x_3 = 2 \\ 4x_1 + 2x_2 + x_3 = 0. \end{cases}$$

- **10.** Decide if each statement is true or false, and explain why.
 - a) A square matrix has no free variables.
 - b) An invertible matrix has no free variables.
 - c) An $m \times n$ matrix has at most *m* pivots.
 - d) A wide matrix (more columns than rows) must have a free variable.
 - e) If *A* is a tall matrix (more rows than columns), then Ax = b has at most one solution.
- **11.** Let *A* be a 4 × 5 matrix with four pivots. Suppose that

(column 1) + 2(column 3) - (column 4) = 0.

- **a)** Find a nonzero solution of Ax = 0.
- b) Which is the free variable?[Hint: the solutions of *Ax* = 0 are unchanged by Gauss–Jordan elimination.]
- **12.** When is the following system consistent?

$$2x_1 + 2x_2 - x_3 = b_1$$

-4x_1 - 5x_2 + 5x_3 = b_2
6x_1 + x_2 + 12x_3 = b_3

Your answer should be a single linear equation in b_1 , b_2 , b_3 . Explain the relationship between this equation and

$$\operatorname{Span}\left\{ \begin{pmatrix} 2\\-4\\6 \end{pmatrix}, \begin{pmatrix} 2\\-5\\1 \end{pmatrix}, \begin{pmatrix} -1\\5\\12 \end{pmatrix} \right\}.$$

13. Find a 2×3 matrix *A* in RREF and a vector *b* such that the solution set of Ax = b consists of all vectors of the form

$$\begin{pmatrix} 1+t\\2-t\\t \end{pmatrix} \qquad t \in \mathbf{R}.$$

14. Suppose that *A* is a 3×3 matrix and *b* is a vector such that Ax = b is a line in \mathbb{R}^3 . How many pivots does *A* have? **15.** Suppose that *A* is a 2×3 matrix such that

$$A\begin{pmatrix}1\\2\\3\end{pmatrix} = \begin{pmatrix}-1\\1\end{pmatrix} \quad \text{and} \quad A\begin{pmatrix}2\\-1\\3\end{pmatrix} = \begin{pmatrix}-1\\1\end{pmatrix}$$

- **a)** Find two different solutions of Ax = 0.
- **b)** Find two more solutions of $Ax = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.
- **16.** Suppose that $Ax = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ has infinitely many solutions. Is it possible for $Ax = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$ to have exactly one solution? How about zero solutions?
- **17.** Suppose that Ax = b is consistent. Explain why Ax = b has a unique solution precisely when Ax = 0 has only the trivial solution.
- **18.** List five different vectors in $\text{Span}\{x, y\}$, where

$$x = \begin{pmatrix} 1\\2\\-3 \end{pmatrix} \qquad y = \begin{pmatrix} -2\\3\\-1 \end{pmatrix}.$$

19. Give geometric descriptions of the following spans.

a) Span
$$\left\{ \begin{pmatrix} 2\\2\\1 \end{pmatrix} \right\}$$
 b) Span $\left\{ \begin{pmatrix} 0\\1\\3 \end{pmatrix}, \begin{pmatrix} 0\\-2\\1 \end{pmatrix} \right\}$ **c)** Span $\left\{ \begin{pmatrix} 0\\1\\3 \end{pmatrix}, \begin{pmatrix} 0\\-2\\-6 \end{pmatrix} \right\}$
d) Span $\left\{ \begin{pmatrix} 2\\-4\\6 \end{pmatrix}, \begin{pmatrix} 2\\-5\\1 \end{pmatrix}, \begin{pmatrix} -1\\5\\12 \end{pmatrix} \right\}$ **e)** Span $\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\2 \end{pmatrix} \right\}$

[Hint: for d), compare Problem 12.]

- **20.** Decide if each statement is true or false, and explain why.
 - a) A vector *b* is a linear combination of the columns of *A* if and only if Ax = b has a solution.
 - **b)** If Ax = b has no solutions, then A does not have a pivot in every row.
 - c) The zero vector is contained in every span.
 - d) The matrix equation Ax = 0 can be consistent or inconsistent, depending on what *A* is.
 - e) If the zero vector is a solution of a system of equations, then the system is homogeneous.
 - f) If Ax = b has a unique solution, then A has a pivot in every column.
 - g) If Ax = b is consistent, then the solution set of Ax = b is obtained by translating the solution set of Ax = 0.

h) It is possible for Ax = b to have exactly 13 solutions.