Homework #4

due Thursday, September 17, at 11:59pm

1. a) For the following matrix A, compute A^T , A^{-1} , $(A^T)^{-1}$, and $(A^{-1})^T$:

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}.$$

Which two will always be equal?

b) For the following matrices A and B, compute AB, $(AB)^T$, A^TB^T , and B^TA^T :

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Which two will always be equal?

- **2.** a) Find a nonzero 2×2 matrix such that $A^2 = 0$.
 - **b)** Show that $A^T A = 0$ is only possible when A = 0.
- **3.** Let *Q* be an $n \times n$ matrix such that $Q^T Q = I_n$ (so $Q^T = Q^{-1}$).
 - **a)** Show that the columns of *Q* are unit vectors.
 - **b)** Show that the columns of *Q* are orthogonal to each other.
 - c) Find all 2×2 matrices Q such that $Q^T Q = I_2$.

Such a matrix *Q* is called *orthogonal*.

- **4.** Decide if each statement is true or false, and explain why.
 - a) If A and B are symmetric, then AB is symmetric.
 - **b)** If A is symmetric, then A^3 is symmetric.
 - **c)** If *A* is symmetric, then A^{-1} is symmetric.
 - **d)** If A is any matrix, then $A^T A$ is symmetric.
- **5.** Let *R* be the reduced row echelon form of a matrix *A*. Explain why the following quantities are all equal to the rank of *A*:
 - a) The number of pivots of *A*.
 - **b)** The number of nonzero rows of *R*.
 - c) The number of columns of *A* minus the number of free variables.
- 6. Let *A* be a matrix such that $Nul(A) = Span\{(1, 2, 3, 4)\}$. What is the rank of *A*, and why?

7. Find a spanning set for the null space of each matrix, and express the null space as the column space of some other matrix.

$$\mathbf{a} \begin{pmatrix} 2 & 1 & 1 & 4 \\ 4 & 2 & 1 & 7 \end{pmatrix} \quad \mathbf{b} \begin{pmatrix} 2 & 2 & -1 \\ -4 & -5 & 5 \\ 6 & 1 & 12 \end{pmatrix}$$
$$\mathbf{c} \begin{pmatrix} 1 & 2 & 3 & -1 & 1 \\ -2 & -4 & -5 & 4 & 1 \\ 1 & 2 & 2 & -3 & -1 \\ -3 & -6 & -7 & 7 & 6 \end{pmatrix} \quad \mathbf{d} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

[Hint: Compare Problem 4 on Homework 3.]

8. Draw pictures of the null space and the column space of the following matrices. Be precise!

- **9.** Give examples of subsets *V* of \mathbf{R}^2 such that:
 - **a)** *V* is closed under addition and contains 0, but is not closed under scalar multiplication.
 - **b)** *V* is is closed under scalar multiplication and contains 0, but is not closed under addition.

c) *V* is closed under addition and scalar multiplication, but does not contain 0. Therefore, none of these conditions is redundant.

- **10.** Which of the following subsets of \mathbb{R}^3 are subspaces? If it is not a subspace, why not? If it is, write it as the column space or null space of some matrix.
 - **a)** The plane $\{(x, y, x): x, y \in \mathbf{R}\}$.
 - **b)** The plane $\{(x, y, 1): x, y \in \mathbf{R}\}$.
 - **c)** The set consisting of all vectors (x, y, z) such that xy = 0.
 - **d)** The set consisting of all vectors (x, y, z) such that $x \le y$.
 - **e)** The span of (1, 2, 3) and (2, 1, −3).
 - **f)** The solution set of the system of equations $\begin{cases} x + y + z = 0 \\ x 2y z = 0. \end{cases}$
 - g) The solution set of the system of equations $\begin{cases} x + y + z = 0 \\ x 2y z = 1. \end{cases}$
- **11.** Give a geometric description of the following column spaces (line, plane, ...).

a)
$$\operatorname{Col}\begin{pmatrix}2\\2\\1\end{pmatrix}$$
 b) $\operatorname{Col}\begin{pmatrix}0&0\\1&-2\\3&1\end{pmatrix}$ **c)** $\operatorname{Col}\begin{pmatrix}0&0\\1&-2\\3&-6\end{pmatrix}$
d) $\operatorname{Col}\begin{pmatrix}2&2&-1\\-4&-5&5\\6&1&12\end{pmatrix}$ **e)** $\operatorname{Col}\begin{pmatrix}1&1&0\\1&2&1\\0&1&2\end{pmatrix}$

[Hint: Compare Problem 19 on Homework 3.]

- **12.** a) Explain why Col(*AB*) is contained in Col(*A*).
 - **b)** Give an example where $Col(AB) \neq Col(A)$. Can you take A = B? [Hint: use Problem 2(a).]
- **13.** a) Explain why Nul(*AB*) contains Nul(*B*).
 - **b)** Give an example where $Nul(AB) \neq Nul(B)$. Can you take A = B? [**Hint:** use Problem 2(a).]
- **14.** If Col(B) is contained in Nul(A), then AB =_____.
- **15.** Find a 2×2 matrix *A* such that Col(A) = Nul(A). What is the rank of such a matrix? [Hint: use Problem 2(a).]

16. Find a matrix *A* such that

$$\operatorname{Col}(A) = \operatorname{Span}\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 2\\-1\\1 \end{pmatrix} \right\}$$
 and $\operatorname{Nul}(A) = \operatorname{Span}\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}.$

What is the rank of *A*?

- **17.** Decide if each statement is true or false, and explain why.
 - a) The column space of an $m \times n$ matrix with *m* pivots is \mathbb{R}^m .
 - **b)** The null space of an $m \times n$ matrix with *n* pivots is \mathbb{R}^n .
 - c) If $Col(A) = \{0\}$, then A is the zero matrix.
 - **d)** If $Nul(A) = \{0\}$, then *A* has full column rank.
 - e) If *A* has full row rank, then $Col(A) = \mathbf{R}^{m}$.
 - f) The column space of 2A equals the column space of A.
 - **g)** The null space of A + B contains the null space of A.
 - **h)** If *U* is an echelon form of *A*, then Nul(U) = Nul(A).
 - i) If *U* is an echelon form of *A*, then Col(U) = Col(A).
- **18.** a) Give an example of a 3×3 matrix *A* such that Col(*A*) contains (1, 2, 3) and (1, 0, -1), but Col(*A*) $\neq \mathbf{R}^3$. What is the rank of *A*?
 - **b)** Give an example of a 3 × 3 matrix *A*, with no zero entries, such that Col(*A*) is the line through (1, 1, 1). What is the rank of *A*?
- **19.** For the following matrix *A*, compute the reduced row echelon form of *A* and of *A*^{*T*}. Do they have the same free variables? Do they have the same rank?

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & -2 & -3 \\ 4 & 5 & 6 \end{pmatrix}$$

20. For each matrix *A*, verify that rank(*A*) = 1, and find vectors *u*, *v* such that $A = uv^{T}$. (In general, a matrix has rank 1 if and only if it is equal to a column vector times a row vector.)

a)
$$A = \begin{pmatrix} 4 & 5 & 6 \\ 8 & 10 & 12 \\ 12 & 15 & 18 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 2 & 1 & -1 & 4 \\ -2 & -1 & 1 & -4 \\ 2 & 1 & -1 & 4 \end{pmatrix}$