Homework #5

due Tuesday, September 22, at 11:59pm

1. Which sets of vectors are linearly independent? If the vectors are linearly dependent, find a linear dependence relation.

a)
$$\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 4\\5\\6 \end{pmatrix}, \begin{pmatrix} 7\\8\\9 \end{pmatrix} \right\}$$
 b) $\left\{ \begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 2\\1 \end{pmatrix}, \begin{pmatrix} 0\\0 \end{pmatrix} \right\}$ **c**) $\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\2 \end{pmatrix} \right\}$
d) $\left\{ \begin{pmatrix} 1\\-2\\1\\-3 \end{pmatrix}, \begin{pmatrix} 2\\-4\\2\\-6 \end{pmatrix}, \begin{pmatrix} 3\\-5\\2\\-7 \end{pmatrix}, \begin{pmatrix} -1\\4\\-3\\7 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1\\6 \end{pmatrix} \right\}$ **e**) $\left\{ \begin{pmatrix} 0\\1\\3 \end{pmatrix}, \begin{pmatrix} 0\\-2\\1 \end{pmatrix} \right\}$

Which sets do you know are linearly dependent without doing any work?

- 2. a) For each set in Problem 1, find a basis for the span of the vectors.
 - **b)** For each set in Problem 1, find a *different* basis for the span of the vectors. Your new basis cannot contain a scalar multiple of any vector in your answer for **a**).
 - c) What is the dimension of each of these spans?
- **3.** Let $\{w_1, w_2, w_3\}$ be a basis for a subspace *V*, and set

$$v_1 = w_2 + w_3$$
 $v_2 = w_1 + w_3$ $v_3 = w_1 + w_2$.

Show that $\{v_1, v_2, v_3\}$ is also a basis for *V*.

4. Find bases for the four fundamental subspaces of each matrix, and compute their dimensions. Verify that dim Col(A) + dim Nul(A) is the number of columns of A, that dim Row(A) + dim Nul(A^T) is the number of rows, and that dim Row(A) = dim Col(A).

[**Hint:** Augment with the $m \times m$ identity matrix so you only have to do Gauss–Jordan elimination once.]

$$\mathbf{a} \begin{pmatrix} 2 & 1 & 1 & 4 \\ 4 & 2 & 1 & 7 \end{pmatrix} \quad \mathbf{b} \begin{pmatrix} 2 & 2 & -1 \\ -4 & -5 & 5 \\ 6 & 1 & 12 \end{pmatrix} \quad \mathbf{c} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
$$\mathbf{d} \begin{pmatrix} 1 & 2 & 3 & -1 & 1 \\ -2 & -4 & -5 & 4 & 1 \\ 1 & 2 & 2 & -3 & -1 \\ -3 & -6 & -7 & 7 & 6 \end{pmatrix} \quad \mathbf{e} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

5. Consider the matrix of Problem 4(b):

$$A = \begin{pmatrix} 2 & 2 & -1 \\ -4 & -5 & 5 \\ 6 & 1 & 12 \end{pmatrix}$$

Which sets of columns form a basis for the column space?

- **6.** Suppose that *A* is an invertible 4×4 matrix. Find bases for its four fundamental subspaces.
- **7.** Find bases for the following subspaces.
 - a) $\{(x, y, x): x, y \in \mathbf{R}\}.$
 - **b)** $\{(x, y, z) \in \mathbb{R}^3 : x = 2y + z\}.$

c) The solution set of the system of equations
$$\begin{cases} x + y + z = 0 \\ x - 2y - z = 0. \end{cases}$$

d)
$$\{x \in \mathbf{R}^3 : Ax = 2x\}$$
, where $A = \begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix}$

- e) The subspace of all vectors in \mathbf{R}^3 whose coordinates sum to zero.
- **f)** The intersection of the plane x 2y z = 0 with the *xy*-plane.
- **8.** Let *A* be a 3×3 matrix with rank 2. Explain why A^2 is not the zero matrix. [**Hint:** Compare Problem 14 on Homework 4.]
- **9.** Let *A* be a 9×4 matrix of rank 3. What are the dimensions of its four fundamental subspaces?
- **10.** If the left null space of a 5×4 matrix *A* has dimension 3, what is the rank of *A*?
- **11.** Let *V* be a 4-dimensional subspace of \mathbf{R}^5 .
 - **a)** Explain why every basis for *V* can be extended to a basis for \mathbb{R}^5 by adding one more vector.
 - **b)** Find an example of a 4-dimensional subspace V of \mathbb{R}^5 and a basis for \mathbb{R}^5 that cannot be reduced to a basis for V by removing one vector.
- **12.** Find an example of a matrix with the required properties, or explain why no such exists.
 - a) The column space contains (1,2,3) and (4,5,6), and the row space contains (1,2) and (2,3).
 - **b)** The column space has basis $\{(1,2,3)\}$, and the null space has basis $\{(3,2,1)\}$.

- **c)** The dimension of the null space is one greater than the dimension of the left null space.
- **d)** A 3×5 matrix whose row space equals its null space.
- a) Show that rank(*AB*) ≤ rank(*A*). [Hint: Compare Problem 12 on Homework 4.]
 b) Show that rank(*AB*) ≤ rank(*B*). [Hint: Take transposes.]
- **14.** This problem explains why we only consider *square* matrices when we discuss invertibility.
 - a) Show that a tall matrix *A* (more rows than columns) does not have a right inverse, i.e., there is no matrix *B* such that $AB = I_m$.
 - **b)** Show that a wide matrix *A* (more columns than rows) does not have a left inverse, i.e., there is no matrix *B* such that $BA = I_n$.

[Hint: compare Problem 13.]

- **15.** Decide if each statement is true or false, and explain why.
 - **a)** If $v_1, v_2, ..., v_n$ are linearly independent vectors, then $\text{Span}\{v_1, v_2, ..., v_n\}$ has dimension *n*.
 - **b)** If the matrix equation Ax = 0 has the trivial solution, then the columns of *A* are linearly independent.
 - c) If Span{ v_1, v_2 } is a plane and the set { v_1, v_2, v_3 } is linearly dependent, then $v_3 \in \text{Span}\{v_1, v_2\}$.
 - **d)** If v_3 is not a linear combination of v_1 and v_2 , then $\{v_1, v_2, v_3\}$ is linearly independent.
 - e) If $\{v_1, v_2, v_3\}$ is linearly dependent, then so is $\{v_1, v_2, v_3, x\}$ for any vector x.
 - f) The set {0} is linearly independent.
 - **g)** If $\{v_1, v_2, v_3, v_4\}$ is linearly independent, then so is $\{v_1, v_2, v_3\}$.
 - h) The columns of any 4×5 matrix are linearly dependent.
 - i) If $Ax = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ has only one solution, then the columns of *A* are linearly independent.
 - **j)** If Span{ v_1, v_2, v_3 } has dimension 3, then { v_1, v_2, v_3 } is linearly independent.
 - **k)** A and A^T have the same number of pivots.