Homework #6

due Tuesday, September 29, at 11:59pm

1. Compute a basis for the orthogonal complement of each the following subspaces.

a)
$$\operatorname{Col}\begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$$
 b) $\operatorname{Nul}\begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$ **c)** $\operatorname{Row}\begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$
d) $\operatorname{Nul}\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$ **e)** $\operatorname{Span}\left\{\begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}\right\}$ **f)** $\operatorname{Col}\begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \end{pmatrix}$

[**Hint:** solving **a**)–**d**) requires only one Gauss-Jordan elimination, and **f**) doesn't require any work.]

- **2.** Compute a basis for the orthogonal complement of each the following subspaces.
 - **a)** $\{(x, y, x): x, y \in \mathbf{R}\}.$
 - **b)** $\{(x, y, z) \in \mathbf{R}^3 : x = 2y + z\}.$

c) The solution set of the system of equations $\begin{cases} x + y + z = 0 \\ x - 2y - z = 0. \end{cases}$

d)
$$\left\{ x \in \mathbf{R}^3 : Ax = 2x \right\}$$
, where $A = \begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix}$

- e) The subspace of all vectors in \mathbf{R}^3 whose coordinates sum to zero.
- **f)** The intersection of the plane x 2y z = 0 with the *xy*-plane.
- **g)** The line $\{(t, -t, t): t \in \mathbf{R}\}$.

[Hint: Compare Problem 7 on Homework 5.]

3. For each pair of vectors *v* and *w*, draw Span{*v*}, and compute and draw the projection *p* of *w* onto Span{*v*}.

a)
$$v = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, w = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$
 b) $v = \begin{pmatrix} -1 \\ 1 \end{pmatrix}, w = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

- **4.** For each vector v in Problem 3, compute the matrix P_V for projection onto $V = \text{Span}\{v\}$ using the formula $P_V = vv^T/v \cdot v$. Verify that $P_V^2 = P_V$, and that $P_V w$ is equal to the projection you computed before.
- **5.** For each subspace *V* and vector *b*, compute the orthogonal projection b_V of *b* onto *V* by solving a normal equation $A^T A x = A^T b$, and find the distance from *b* to *V*.

a)
$$V = \operatorname{Col} \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 2 \end{pmatrix} \qquad b = \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix}$$

b)
$$V = \operatorname{Col} \begin{pmatrix} 1 & 2 & 1 \\ -1 & 1 & 0 \\ 2 & 2 & -1 \\ 4 & 3 & 0 \end{pmatrix} \qquad b = \begin{pmatrix} -1 \\ -1 \\ -1 \\ 7 \end{pmatrix}$$
$$\begin{pmatrix} 2 & 2 & -1 \\ 7 \end{pmatrix} \qquad (-6)$$

c)
$$V = \operatorname{Col}\begin{pmatrix} 2 & 2 & -1 \\ -4 & -5 & 5 \\ 6 & 1 & 12 \end{pmatrix} \qquad b = \begin{pmatrix} -6 \\ -24 \\ -3 \end{pmatrix}$$

6. For each subspace *V*, compute the orthogonal decomposition $b = b_V + b_{V^{\perp}}$ of the vector b = (1, 2, -1) with respect to *V*.

a)
$$V = \text{Span}\left\{ \begin{pmatrix} 1\\2\\2 \end{pmatrix}, \begin{pmatrix} 0\\2\\0 \end{pmatrix} \right\}$$

b) $V = \text{Nul}\begin{pmatrix} 1 & 2 & 2\\0 & 2 & 0 \end{pmatrix}$
c) $V = \mathbb{R}^3$
d) $V = \{0\}$

[Hint: Only part a) requires any work.]

7. Compute the orthogonal decomposition $(3, 1, 3) = b_V + b_{V^{\perp}}$ with respect to each subspace of *V* of Problem 1(a)–(e).

[**Hint:** Only parts **a**) and **c**) require any work, and even **c**) doesn't require work if you're clever enough. In fact, you can solve all five parts by computing two dot products.]

- **8.** Let P_V be the matrix for orthogonal projection onto a subspace V of \mathbb{R}^n .
 - **a)** Explain why $P_V^2 = P_V$.
 - **b)** Explain why $P_V + P_{V^{\perp}} = I_n$.
 - **c)** Explain why $P_V^T = P_V$. (Use the formula $P_V = A(A^T A)^{-1}A^T$.)
 - **d)** What are $Col(P_V)$ and $Nul(P_V)$? What is $rank(P_V)$? Explain your answers.
- **9.** Compute the matrix P_V for orthogonal projection onto each subspace of Problem 5 and Problem 6. Verify properties (a) and (c) of Problem 8.
- **10.** Compute the matrices P_1 , P_2 for orthogonal projection onto the lines through $a_1 = (-1, 2, 2)$ and $a_2 = (2, 2, -1)$, respectively. Now compute P_1P_2 , and explain why it is what it is.
- **11.** Consider the plane *V* defined by the equation x + 2y z = 0. Compute the matrix P_V for orthogonal projection onto *V* in two ways:

- **a)** Find a basis for *V*, put your basis vectors into a matrix *A*, and use the formula $P_V = A(A^T A)^{-1} A^T$.
- **b)** Compute the matrix for orthogonal projection $P_{V^{\perp}}$ onto the line V^{\perp} using the formula $vv^T/v \cdot v$, and subtract: $P_V = I_3 P_{V^{\perp}}$.

[**Hint:** It doesn't take any work to find a basis for V^{\perp} .]

If V is defined by a single equation in 1 000 000 variables, which method do you think a computer would be able to implement?

12. a) Find an implicit equation for the plane

$$\operatorname{Span}\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 4\\5\\6 \end{pmatrix}, \begin{pmatrix} 7\\8\\9 \end{pmatrix} \right\}.$$

[**Hint:** use Problem 1(a).]

- **b)** Find implicit equations for the line $\{(t, -t, t): t \in \mathbf{R}\}$. [Hint: use Problem 2(g).]
- **13.** Construct a matrix *A* with each of the following properties, or explain why no such matrix exists.

a) The column space contains
$$\begin{pmatrix} 0\\2\\1 \end{pmatrix}$$
, and the null space contains $\begin{pmatrix} 1\\-1\\2 \end{pmatrix}$ and $\begin{pmatrix} -1\\3\\2 \end{pmatrix}$
b) The row space contains $\begin{pmatrix} 0\\2\\1 \end{pmatrix}$, and the null space contains $\begin{pmatrix} 1\\-1\\2 \end{pmatrix}$ and $\begin{pmatrix} -1\\3\\2 \end{pmatrix}$.
c) $Ax = \begin{pmatrix} 1\\2\\3 \end{pmatrix}$ is consistent, and $A^T \begin{pmatrix} -1\\-1\\2 \end{pmatrix} = 0$.

d) A 2 × 2 matrix *A* with no zero entries such that every row of *A* is orthogonal to every column.

e) The sum of the columns of *A* is
$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
, and the sum of the rows of *A* is $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

- **14.** Suppose that *S* is a symmetric matrix. Explain why Col(*S*) is orthogonal to Nul(*S*).
- **15.** Draw the four fundamental subspaces of the following matrices, in grids like below.

$$\mathbf{a})\begin{pmatrix}1&3\\2&6\end{pmatrix} \qquad \mathbf{b})\begin{pmatrix}1&0\\2&0\end{pmatrix}$$

- **16.** The floor *V* and the wall *W* are not orthogonal subspaces, because they share a nonzero vector (along the line where they meet).
 - **a)** If $V = \operatorname{Col}(A)$ and $W = \operatorname{Col}(B)$ for

$$A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 5 & 4 \\ 6 & 3 \\ 5 & 1 \end{pmatrix},$$

find a nonzero vector contained in both V and W.

[Hint: You want vectors x and y with Ax = By. Form the matrix (A B).]

- b) Generalize what you did in a) to explain why there do not exist orthogonal planes in \mathbb{R}^3 .
- **17.** Explain why *A* has full column rank if and only if $A^T A$ is invertible.
- **18.** Decide if each statement is true or false, and explain why.
 - a) Two subspaces that meet only at the zero vector are orthogonal.
 - **b)** If *A* is a 3×4 matrix, then Col(*A*)^{\perp} is a subspace of **R**⁴.
 - c) If A is any matrix, then $Nul(A) = Nul(A^T A)$.
 - **d)** If *A* is any matrix, then $Row(A) = Row(A^T A)$.
 - e) If every vector in a subspace V is orthogonal to every vector in another subspace W, then $V = W^{\perp}$.
 - **f)** If x is in V and V^{\perp} , then x = 0.
 - g) If x is in a subspace V, then the orthogonal projection of x onto V is x.