Homework #6

due Tuesday, September 29, at 11:59pm

1. Compute a basis for the orthogonal complement of each the following subspaces.

a) Col
$$
\begin{pmatrix} 1 & 4 & 7 \ 2 & 5 & 8 \ 3 & 6 & 9 \end{pmatrix}
$$
 b) Null $\begin{pmatrix} 1 & 4 & 7 \ 2 & 5 & 8 \ 3 & 6 & 9 \end{pmatrix}$ **c)** Row $\begin{pmatrix} 1 & 4 & 7 \ 2 & 5 & 8 \ 3 & 6 & 9 \end{pmatrix}$
d) Null $\begin{pmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{pmatrix}$ **e)** Span $\left\{\begin{pmatrix} 3 \ 1 \ 3 \end{pmatrix}, \begin{pmatrix} 0 \ -2 \ 1 \end{pmatrix} \right\}$ **f)** Col $\begin{pmatrix} 1 & 2 & 0 \ 2 & 1 & 0 \end{pmatrix}$

[**Hint:** solving **a)**–**d)** requires only one Gauss-Jordan elimination, and **f)** doesn't require any work.]

- **2.** Compute a basis for the orthogonal complement of each the following subspaces. **a**) $\{(x, y, x) : x, y \in \mathbb{R}\}.$
	- **b**) $\{(x, y, z) \in \mathbb{R}^3 : x = 2y + z\}.$

c) The solution set of the system of equations $\begin{cases} x + y + z = 0 \\ y = 2y - z = 0 \end{cases}$ *x* − 2*y* − *z* = 0.

d)
$$
\{x \in \mathbb{R}^3 : Ax = 2x\}
$$
, where $A = \begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix}$.

- **e)** The subspace of all vectors in **R** ³ whose coordinates sum to zero.
- **f)** The intersection of the plane $x 2y z = 0$ with the *xy*-plane.
- **g**) The line $\{(t, -t, t) : t \in \mathbb{R}\}.$

[**Hint:** Compare Problem 7 on Homework 5.]

3. For each pair of vectors *v* and *w*, draw Span{*v*}, and compute and draw the projection *p* of *w* onto Span{*v*}.

a)
$$
v = \begin{pmatrix} 1 \\ 0 \end{pmatrix}
$$
, $w = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$ **b)** $v = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$, $w = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

- **4.** For each vector *v* in Problem [3,](#page-0-0) compute the matrix P_V for projection onto $V =$ Span $\{v\}$ using the formula $P_V = vv^T / v \cdot v$. Verify that $P_V^2 = P_V$, and that $P_V w$ is equal to the projection you computed before.
- **5.** For each subspace *V* and vector *b*, compute the orthogonal projection b_V of *b* onto *V* by solving a normal equation $A^T A x = A^T b$, and find the distance from *b* to *V*.

a)
$$
V = \text{Col} \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 2 \end{pmatrix}
$$
 $b = \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix}$

b)
\n
$$
V = \text{Col}\begin{pmatrix} 1 & 2 & 1 \\ -1 & 1 & 0 \\ 2 & 2 & -1 \\ 4 & 3 & 0 \end{pmatrix} \qquad b = \begin{pmatrix} -1 \\ -1 \\ -1 \\ 7 \end{pmatrix}
$$
\n**c)**
\n
$$
V = \text{Col}\begin{pmatrix} 2 & 2 & -1 \\ -4 & -5 & 5 \\ 6 & 1 & 12 \end{pmatrix} \qquad b = \begin{pmatrix} -6 \\ -24 \\ -3 \end{pmatrix}
$$

6. For each subspace *V*, compute the orthogonal decomposition $b = b_y + b_{y\perp}$ of the vector $b = (1, 2, -1)$ with respect to *V*.

a)
$$
V = \text{Span}\left\{ \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} \right\}
$$
 b) $V = \text{Nul} \begin{pmatrix} 1 & 2 & 2 \\ 0 & 2 & 0 \end{pmatrix}$
c) $V = \mathbf{R}^3$ **d)** $V = \{0\}$

[**Hint:** Only part **a)** requires any work.]

7. Compute the orthogonal decomposition $(3, 1, 3) = b_V + b_{V^{\perp}}$ with respect to each subspace of *V* of Problem $1(a)$ $1(a)$ –(e).

[**Hint:** Only parts **a)** and **c)** require any work, and even **c)** doesn't require work if you're clever enough. In fact, you can solve all five parts by computing two dot products.]

- **8.** Let P_V be the matrix for orthogonal projection onto a subspace *V* of \mathbb{R}^n .
	- **a**) Explain why $P_V^2 = P_V$.
	- **b**) Explain why $P_V + P_{V^{\perp}} = I_n$.
	- **c**) Explain why $P_V^T = P_V$. (Use the formula $P_V = A(A^T A)^{-1} A^T$.)
	- **d**) What are Col(P_V) and Nul(P_V)? What is rank(P_V)? Explain your answers.
- **9.** Compute the matrix P_V for orthogonal projection onto each subspace of Problem [5](#page-0-2) and Problem [6.](#page-1-0) Verify properties (a) and (c) of Problem [8.](#page-1-1)
- **10.** Compute the matrices P_1 , P_2 for orthogonal projection onto the lines through $a_1 =$ $(-1, 2, 2)$ and $a_2 = (2, 2, -1)$, respectively. Now compute $P_1 P_2$, and explain why it is what it is.
- **11.** Consider the plane *V* defined by the equation $x + 2y z = 0$. Compute the matrix P_V for orthogonal projection onto V in two ways:
- **a)** Find a basis for *V*, put your basis vectors into a matrix *A*, and use the formula $P_V = A(A^T A)^{-1} A^T$.
- **b)** Compute the matrix for orthogonal projection $P_{V^{\perp}}$ onto the line V^{\perp} using the formula $v v^T / v \cdot v$, and subtract: $P_V = I_3 - P_{V^{\perp}}$.

[**Hint:** It doesn't take any work to find a basis for *V* ⊥ .]

If *V* is defined by a single equation in 1 000 000 variables, which method do you think a computer would be able to implement?

12. a) Find an implicit equation for the plane

$$
\text{Span}\left\{\begin{pmatrix}1\\2\\3\end{pmatrix},\begin{pmatrix}4\\5\\6\end{pmatrix},\begin{pmatrix}7\\8\\9\end{pmatrix}\right\}.
$$

[**Hint:** use Problem [1\(](#page-0-1)a).]

- **b**) Find implicit equations for the line $\{(t, -t, t): t \in \mathbb{R}\}.$ [**Hint:** use Problem [2\(](#page-0-3)g).]
- **13.** Construct a matrix *A* with each of the following properties, or explain why no such matrix exists.

\n- **a)** The column space contains
$$
\begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}
$$
, and the null space contains $\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}$.
\n- **b)** The row space contains $\begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$, and the null space contains $\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}$.
\n- **c)** $Ax = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ is consistent, and $A^T \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} = 0$.
\n

d) A 2 × 2 matrix *A* with no zero entries such that every row of *A* is orthogonal to every column.

e) The sum of the columns of *A* is
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
, and the sum of the rows of *A* is $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

- **14.** Suppose that *S* is a symmetric matrix. Explain why Col(*S*) is orthogonal to Nul(*S*).
- **15.** Draw the four fundamental subspaces of the following matrices, in grids like below.

$$
a) \begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix} \qquad b) \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}
$$

- **16.** The floor *V* and the wall *W* are not orthogonal subspaces, because they share a nonzero vector (along the line where they meet).
	- **a**) If $V = \text{Col}(A)$ and $W = \text{Col}(B)$ for

$$
A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 5 & 4 \\ 6 & 3 \\ 5 & 1 \end{pmatrix},
$$

find a nonzero vector contained in both *V* and *W*.

[Hint: You want vectors *x* and *y* with $Ax = By$. Form the matrix $(A \ B)$.]

- **b)** Generalize what you did in **a)** to explain why there do not exist orthogonal planes in **R** 3 .
- **17.** Explain why *A* has full column rank if and only if A^TA is invertible.
- **18.** Decide if each statement is true or false, and explain why.
	- **a)** Two subspaces that meet only at the zero vector are orthogonal.
	- **b**) If *A* is a 3 \times 4 matrix, then Col(*A*)^{\perp} is a subspace of **R**⁴.
	- **c**) If *A* is any matrix, then $Nul(A) = Nul(A^TA)$.
	- **d**) If *A* is any matrix, then $Row(A) = Row(A^T A)$.
	- **e)** If every vector in a subspace *V* is orthogonal to every vector in another subspace W , then $V = W^{\perp}$.
	- **f**) If *x* is in *V* and V^{\perp} , then $x = 0$.
	- **g)** If *x* is in a subspace *V*, then the orthogonal projection of *x* onto *V* is *x*.