Homework #8

due Thursday, October 15, at 11:59pm

1. Compute the determinants of the following matrices using Gaussian elimination.

a)
$$\begin{pmatrix} -2 & 1 \\ 1 & 3 \end{pmatrix}$$
 b) $\begin{pmatrix} -3 & 3 & 2 \\ 3 & 0 & 0 \\ -9 & 18 & 7 \end{pmatrix}$
c) $\begin{pmatrix} -4 & -3 & -3 & -2 \\ 4 & 1 & 2 & -2 \\ -12 & -3 & -9 & 3 \\ 0 & 8 & 19 & 33 \end{pmatrix}$ d) $\begin{pmatrix} 2 & 2 & -1 \\ -4 & -5 & 5 \\ 6 & 1 & 12 \end{pmatrix}$

2. Suppose that

$$\det\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = 10 \quad \text{and} \quad \det\begin{pmatrix} a' & b' & c' \\ d & e & f \\ g & h & i \end{pmatrix} = 5.$$

Find the determinants of the following matrices.

a)
$$\begin{pmatrix} d & e & f \\ a & b & c \\ g & h & i \end{pmatrix}$$
 b) $\begin{pmatrix} a & b & c \\ d & e & f \\ g+2d & h+2e & i+2f \end{pmatrix}$ c) $\begin{pmatrix} a & b & c \\ \frac{1}{2}d & \frac{1}{2}e & \frac{1}{2}f \\ g & h & i \end{pmatrix}$ d) $\begin{pmatrix} g & h & i \\ a & b & c \\ d & e & f \end{pmatrix}$ e) $\begin{pmatrix} a & b & c \\ d & e & f \\ 2g+d & 2h+e & 2i+f \end{pmatrix}$ f) $\begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix}$ g) $2\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$ h) $\begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix}\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$ i) $\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$ j) $-\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$ l) $\begin{pmatrix} a & b+2c & c \\ d & e+2f & f \\ g & h+2i & i \end{pmatrix}$ m) $\begin{pmatrix} a+2a' & b+2b' & c+2c' \\ d & e & f \\ g & h & i \end{pmatrix}$

- **3.** Find det(E) when:
 - **a)** *E* is the elementary matrix for a row replacement.
 - **b)** *E* is the elementary matrix for $R_i \times = c$.
 - **c)** E is the elementary matrix for a row swap.

4. A matrix *A* has the PA = LU factorization

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} A = L \begin{pmatrix} 2 & 1 & 3 & 0 \\ 0 & -1 & 1 & 5 \\ 0 & 0 & 4 & 7 \\ 0 & 0 & 0 & -3 \end{pmatrix}.$$

What is det(A)?.

- **5.** Let *A* be the $n \times n$ matrix $(n \ge 3)$ whose (i, j) entry is i + j. Use row operations to show that det(A) = 0.
- **6. a)** Compute the determinants of the matrices in Problem 1 in two more ways: by expanding cofactors along a row, and by expanding cofactors along a column. You should get the same answer using all three methods!
 - **b)** Compute the determinants of the matrices in Problem 1(b) and (d) *again* using Sarrus' scheme.
 - **c)** For the matrix of Problem 1(c), sum the products of the forward diagonals and subtract the products of the backward diagonals, as in Sarrus' scheme. Did you get the determinant?
- 7. Consider the matrix

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 2 \end{pmatrix}.$$

- **a)** Compute the cofactor matrix *C* of *A*.
- **b)** Compute AC^T . What is the relationship between C^T and A^{-1} ?
- **8.** Consider the $n \times n$ matrix F_n with 1's on the diagonal, 1's in the entries immediately below the diagonal, and -1's in the entries immediately above the diagonal:

$$F_2 = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \qquad F_3 = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix} \qquad F_4 = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \qquad \cdots$$

- a) Show that $det(F_2) = 2$ and $det(F_3) = 3$.
- **b)** Expand in cofactors to show that $det(F_n) = det(F_{n-1}) + det(F_{n-2})$.
- c) Compute $det(F_4)$, $det(F_5)$, $det(F_6)$, $det(F_7)$ using b).

This shows that $det(F_n)$ is the nth Fibonacci number. (The sequence usually starts with $1, 1, 2, 3, \ldots$, so our $det(F_n)$ is the usual n + 1st Fibonacci number.)

- **9.** Let *A* be an $n \times n$ invertible matrix with integer (whole number) entries.
 - a) Explain why det(A) is an integer.
 - **b)** If $det(A) = \pm 1$, show that A^{-1} has integer entries.

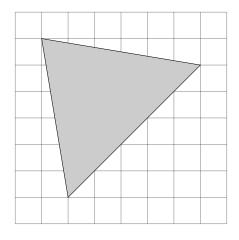
- c) If A^{-1} has integer entries, show that $det(A) = \pm 1$.
- **10.** Recall that an *orthogonal matrix* is a square matrix with orthonormal columns.
 - a) Prove that every orthogonal matrix has determinant ± 1 .
 - **b)** Prove that the cofactor matrix of an orthogonal matrix Q is $\pm Q$.
 - c) Show that $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ is orthogonal, and compute its determinant.
 - **d)** Let L be the line through (1,1,1), and let $R_L = I_3 2P_L$ be the reflection over the plane x + y + z = 0. Compute R_L , show that it is orthogonal, and find its determinant.
 - e) Let L be any line in \mathbf{R}^3 , and let $R_L = I_3 2P_L$ be the reflection over the orthogonal plane. Verify that R_L is orthogonal, and prove that $\det(R_L) = -1$, as follows: choose an orthonormal basis $\{u_1, u_2\}$ for L^\perp , and let $u_3 = u_1 \times u_2$. Show that the matrix A with columns u_1, u_2, u_3 has determinant 1, and that $R_L A$ has determinant -1.

[**Hint:** Recall that $P_L^2 = P_L = P_L^T$.]

- **11.** Let *V* be a subspace of \mathbb{R}^n and let P_V be the projection matrix onto *V*.
 - a) Find $det(P_V)$ when $V \neq \mathbb{R}^n$.
 - **b)** Find $det(P_V)$ when $V = \mathbf{R}^n$.
- **12.** Let *C* be the *hypercube* in \mathbb{R}^4 with corners $(\pm 1, \pm 1, \pm 1, \pm 1)$. Compute the volume of *C*.
- **13.** Let *A* be an $n \times n$ matrix with columns v_1, v_2, \dots, v_n .
 - a) Show that if $\{v_1, v_2, \dots, v_n\}$ is orthogonal then $|\det(A)| = ||v_1|| \, ||v_2|| \cdots ||v_n||$. [Hint: Compute A^TA and its determinant.]
 - **b)** If *V* is a subspace and *x* is a vector with orthogonal projection x_V , show that $||x_V|| \le ||x||$, with equality if and only if $x \in V$.
 - **c)** Show that $|\det(A)| \le ||v_1|| ||v_2|| \cdots ||v_n||$, with equality if and only if the set $\{v_1, v_2, \dots, v_n\}$ is orthogonal.

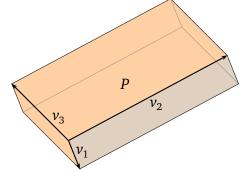
[Hint: Use b) and the QR decomposition of A.]

- **d)** What is the largest possible volume of a paralellepiped spanned by four corners of the hypercube *C* of Problem 12?
- **14.** Compute the area of the triangle pictured below using a 2×2 determinant. (The grid marks are one unit apart.)



15. Consider the paralellepiped P in \mathbb{R}^3 spanned by

$$\nu_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \qquad \nu_2 = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} \qquad \nu_3 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}.$$



- a) Compute the volume of *P* using a triple product $(v_1 \times v_2) \cdot v_3$.
- **b)** Compute the area of each face of *P* using cross products.
- **c)** If the "base" of P is the paralellogram spanned by v_1 and v_2 (blue in the picture), show that the height of P is $||v_3|| \sin \theta$, where θ is the angle that v_3 makes with the base. (Draw a simpler picture.)
- **d)** The volume of *P* is the area of the base of *P* times its height. How do you reconcile **c)** with **a)**? (Remember that $||u \cdot v|| = ||u|| ||v|| \cos(\text{the angle from } u \text{ to } v)$.)
- **16.** Use a cross product to find an implicit equation for the plane

$$V = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} \right\}.$$

Compare Problem 12(a) in Homework 6.

17. a) Let v = (a, b) and w = (c, d) be vectors in the plane, and let $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$. By taking the cross product of (a, b, 0) and (c, d, 0), explain how the right-hand rule determines the sign of det(A).

b) Using the identity

$$\begin{bmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} \times \begin{pmatrix} d \\ e \\ f \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} g \\ h \\ i \end{pmatrix} = \det \begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix},$$

explain how the right-hand rule determines the sign of a 3×3 determinant.

- **18.** Decide if each statement is true or false, and explain why.
 - a) det(A+B) = det(A) + det(B).
 - **b)** $\det(ABC^{-1}) = \frac{\det(A)\det(B)}{\det(C)}.$
 - c) det(AB) = det(BA).
 - **d)** det(3A) = 3 det(A).
 - e) If A^5 is invertible then A is invertible.
 - **f)** The determinant of *A* is the product of its diagonal entries.
 - **g)** If the columns of *A* are linearly dependent, then det(A) = 0.
 - **h)** The determinant of the cofactor matrix of *A* equals the determinant of *A*.
 - i) If A is a 3×3 matrix with determinant zero, then two of the columns of A are scalar multiples of each other.
 - **j)** $u \times v = v \times u$.
 - **k)** If $u \times v = 0$ then $u \perp v$.