Homework #9

due Tuesday, October 20, at 11:59pm

1. For each matrix *A* and each vector *x*, decide if *x* is an eigenvector of *A*, and if so, find the eigenvalue λ .

a)
$$\begin{pmatrix} -20 & 42 & 58 \\ 1 & -1 & -3 \\ -1 & 18 & 26 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 5 \\ -2 \end{pmatrix}$ b) $\begin{pmatrix} 2 & 3 & 0 \\ -5 & 4 & 2 \\ 3 & 3 & 3 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$
c) $\begin{pmatrix} -7 & 32 & -76 \\ 7 & -22 & 59 \\ 3 & -11 & 28 \end{pmatrix}$, $\begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix}$ d) $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$
e) $\begin{pmatrix} -3 & 2 & -3 \\ 3 & -3 & -2 \\ -4 & 2 & -3 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

2. Suppose that *A* is an $n \times n$ matrix such that Av = 2v for some $v \neq 0$. Let *C* be any invertible matrix. Consider the matrices

a)
$$A^{-1}$$
 b) $A + 2I_n$ **c)** A^3 **d)** CAC^{-1} .

Show that v is an eigenvector of **a**)–**c**) and that Cv is as eigenvector of **d**), and find the eigenvalues.

3. Here is a handy trick for computing eigenvectors of a 2×2 matrix.

Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a 2 × 2 matrix with eigenvalue λ .

- **a)** Explain why $\binom{-b}{a-\lambda}$ and $\binom{d-\lambda}{-c}$ are λ -eigenvectors of A if they are nonzero.
- **b)** Suppose that *A* has another eigenvalue $\lambda' \neq \lambda$. Explain why $\binom{a-\lambda}{c}$ and $\binom{b}{d-\lambda}$ (the columns of $A \lambda I_2$) are λ' -eigenvectors of *A* if they are nonzero. (No, this is not a typo.)

[**Hint:** Show $A(A - \lambda I_2) = \lambda'(A - \lambda I_2)$ by showing that $(A - \lambda' I_2)(A - \lambda I_2) = 0$: multiply by a vector expanded in an eigenbasis.]

Hence you can usually compute all eigenvectors of a 2×2 matrix very quickly.

4. For each 2×2 matrix *A*, **i**) compute the characteristic polynomial using the formula $p(\lambda) = \lambda^2 - \text{Tr}(A)\lambda + \det(A)$. Use this to **ii**) find all real eigenvalues, and **iii**) find a basis for each eigenspace, using Problem 3 when applicable. **iv**) Draw and label each eigenspace. **v**) Is the matrix diagonalizable (over the real numbers)? If so, find an invertible matrix *C* and a diagonal matrix *D* such that $A = CDC^{-1}$.

a)
$$\begin{pmatrix} 1 & -2 \\ 1 & 4 \end{pmatrix}$$
 b) $\begin{pmatrix} -1 & 1 \\ -9 & 5 \end{pmatrix}$ c) $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$ d) $\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$ e) $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$

5. For each matrix *A*, **i**) find all real eigenvalues of *A*, and **ii**) find a basis for each eigenspace. **iii**) Is the matrix diagonalizable (over the real numbers)? If so, find an invertible matrix *C* and a diagonal matrix *D* such that $A = CDC^{-1}$.

At least one eigenvalue is provided; use that and synthetic division (or a computer algebra system) to find the others.

a)
$$\begin{pmatrix} -1 & 7 & 5\\ 0 & 1 & -2\\ 0 & 1 & 4 \end{pmatrix}$$
, $\lambda = -1$ b) $\begin{pmatrix} 7 & 12 & 12\\ -8 & -13 & -12\\ 4 & 6 & 5 \end{pmatrix}$, $\lambda = 1$
c) $\begin{pmatrix} 6 & 2 & 3\\ -14 & -7 & -12\\ 1 & 2 & 4 \end{pmatrix}$, $\lambda = 1$

Optional (if you want more practice):

$$\mathbf{d} \begin{pmatrix} -11 & -54 & 10 \\ -2 & -7 & 2 \\ -21 & -90 & 20 \end{pmatrix}, \ \lambda = 1 \qquad \mathbf{e} \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \ \lambda = 2$$
$$\mathbf{f} \begin{pmatrix} 13 & 18 & -18 \\ -12 & -17 & 18 \\ -4 & -6 & 7 \end{pmatrix}, \ \lambda = 1 \qquad \mathbf{g} \end{pmatrix} \begin{pmatrix} -10 & 28 & -18 & -76 \\ -1 & 9 & -6 & -2 \\ 4 & -8 & 7 & 26 \\ 0 & 2 & -2 & 4 \end{pmatrix}, \ \lambda_1 = 1 \\ \lambda_2 = 2 \end{pmatrix}$$

6. Consider the matrix

$$A = \begin{pmatrix} 4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}.$$

- a) Find a diagonal matrix D and an invertible matrix C such that $A = CDC^{-1}$.
- **b)** Find a *different* diagonal matrix D' and a *different* invertible matrix C' such that $A = C'D'C'^{-1}$.

[Hint: Try re-ordering the eigenvalues.]

7. Compute the matrix with eigenvalues 0, 1, 2 and corresponding eigenvectors

$$\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \quad \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \quad \begin{pmatrix} 0\\1\\2 \end{pmatrix}.$$

(There is only one such matrix.)

- **8.** a) Show that A and A^T have the same eigenvalues.
 - **b)** Give an example of a 2×2 matrix *A* such that *A* and A^T do not share any eigenvectors.
 - c) A *stochastic matrix* is a matrix with nonnegative entries whose columns sum to 1. Explain why 1 is an eigenvalue of a stochastic matrix.
 [Hint: show that (1, 1, ..., 1) is an eigenvector of A^T.]

9. a) Find all eigenvalues of the matrix

$$\begin{pmatrix} 1 & -1 & 2 & 3 & 4 \\ 0 & 3 & -1 & -2 & -5 \\ 0 & 0 & 1 & 2 & 4 \\ 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix}.$$

b) Explain how to find the eigenvalues of any triangular matrix.

- **10.** Let *A* and *B* be $n \times n$ matrices, and let v_1, \ldots, v_n be a basis of \mathbb{R}^n .
 - **a)** Suppose that each v_i is an eigenvector of both *A* and *B*. Show that AB = BA.
 - **b)** Suppose that each v_i is an eigenvector of both *A* and *B* with the same eigenvalue. Show that A = B.

[**Hint:** To show two matrices are equal, try multiplying them by any vector, expanded in your eigenbasis. Alternatively, use the matrix form of diagonalization.]

- **11.** Let *A* be an $n \times n$ matrix, and let *C* be an invertible $n \times n$ matrix. Prove that the characteristic polynomial of CAC^{-1} equals the characteristic polynomial of *A*. In particular, *A* and CAC^{-1} have the same eigenvalues, the same determinant, and the same trace. They are called *similar* matrices.
- **12.** Recall that an *orthogonal matrix* is a square matrix with orthonormal columns.
 - a) Prove that any real eigenvalue of an orthogonal matrix Q is ± 1 .
 - **b)** Let *L* be the line through (1, 1, 1), and let $R_L = I_3 2P_L$ be the reflection over the plane x + y + z = 0. You computed R_L in Problem 10 of Homework 8. Diagonalize R_L without doing any work.
- **13.** The *Fibonacci numbers* are defined recursively as follows:

$$F_0 = 0,$$
 $F_1 = 1,$ $F_{n+2} = F_{n+1} + F_n \ (n \ge 0).$

The first few Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, ... In this problem, you will find a closed formula (as opposed to a recursive formula) for the *n*th Fibonacci number using diagonalization.

- **a)** Let $v_n = {\binom{F_{n+1}}{F_n}}$, so $v_0 = {\binom{1}{0}}$, $v_1 = {\binom{1}{1}}$, etc. Find a transition matrix *A* such that $v_{n+1} = Av_n$ for all $n \ge 0$.
- **b)** Show that the eigenvalues of *A* are $\lambda_1 = \frac{1}{2}(1 + \sqrt{5})$ and $\lambda_2 = \frac{1}{2}(1 \sqrt{5})$, with corresponding eigenvectors $w_1 = {\binom{-1}{\lambda_2}}$ and $w_2 = {\binom{-1}{\lambda_1}}$. [**Hint:** Just show $Aw_i = \lambda_i w_i$ using the relations $\lambda_1 \lambda_2 = -1$ and $\lambda_1 + \lambda_2 = 1$.]
- c) Find x_1, x_2 such that $v_0 = x_1w_1 + x_2w_2$. (It helps to write x_1, x_2 in terms of λ_1, λ_2 .)

d) Multiply $v_0 = x_1w_1 + x_2w_2$ by A^n to show that

$$F_n=\frac{\lambda_1^n-\lambda_2^n}{\lambda_1-\lambda_2}.$$

- e) Use this formula to explain why F_{n+1}/F_n approaches the golden ratio when *n* is large.
- 14. Pretend that there are three Red Box kiosks in Durham. Let x_t, y_t, z_t be the number of copies of Prognosis Negative at each of the three kiosks, respectively, on day *t*. Suppose in addition that a customer renting a movie from kiosk *i* will return the movie the next day to kiosk *j*, with the following probabilities:

	Re	Renting from kiosk			
Returning to kiosk		1	2	3	
	1	30%	40%	50%	
	2	30%	40%	30%	
	3	40%	20%	20%	

For instance, a customer renting from kiosk 3 has a 50% probability of returning it to kiosk 1.

- **a)** Let $v_t = (x_t, y_t, z_t)$. Find the state change matrix A such that $v_{t+1} = Av_t$.
- **b)** Find a basis of \mathbb{R}^3 consisting of eigenvectors of *A*. What are the eigenvalues? [Hint: *A* is a stochastic matrix, so you know one eigenvalue by Problem 8(c).]
- **c)** If you start with a total of 1 000 copies of Prognosis Negative, how many of them will eventually end up at each kiosk?

This is an example of a stochastic process, and is an important application of eigenvalues and eigenvectors.

15. Let $A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$. Find a closed formula for A^n : that is, an expression of the form

$$A^{n} = \begin{pmatrix} a_{11}(n) & a_{12}(n) \\ a_{21}(n) & a_{22}(n) \end{pmatrix},$$

where $a_{ij}(n)$ is a function of *n*.

- 16. Give an example of each of the following, or explain why no such example exists.
 a) An invertible matrix with characteristic polynomial p(λ) = -λ³ + 2λ² + 3λ.
 - **b)** A 2×2 orthogonal matrix with no real eigenvalues.
- 17. Decide if each statement is true or false, and explain why.a) If *v*, *w* are eigenvectors of a matrix *A*, then so is *v* + *w*.

- **b)** An eigenvalue of A + B is the sum of an eigenvalue of A and an eigenvalue of B.
- **c)** An eigenvalue of *AB* is the product of an eigenvalue of *A* and an eigenvalue of *B*.
- **d)** If $Ax = \lambda x$ for some vector *x*, then λ is an eigenvalue of *A*.
- e) A matrix with eigenvalue 0 is not invertible.
- **f)** The eigenvalues of *A* are equal to the eigenvalues of a row echelon form of *A*.
- **g)** If v, w are eigenvectors of A with different eigenvalues, then $\{v, w\}$ is linearly independent.