The Singular Value Decomposition
\nCaptone of the class. Fundamental application of linear
\nalgebra, to data analysis: lemma often things).
\nSVD will let you work any matrix in the form
\n
$$
A = a.uvT + a.uvT + \dots + a.uvT
$$
 where
\n $a \ge -a.uvT + a.uvT + \dots + a.uvT$ where
\n $a \ge -a.uvT + a.uvT + \dots + a.uvT$ where
\n $a \ge -a.uvT + a.uvT + \dots + a.uvT$
\n $\frac{du}{du} = \frac{du}{du} \cdot \frac$

Plot the columns:	Goelfs $+$ (3)
$\begin{pmatrix} 3 \\ 1 \end{pmatrix} (-1 - 2 + 3 - 2)$...
0 which are $+$, $1, -3$, $(3, 1, 2, -1, 0)$...
0 which is A rank-2 matrix encodes data points that lie on the plane 5 par 3 units?	
But: $\ (\frac{5}{2})\ \gg \ (\frac{1}{2}-3)\ $ so the $(\frac{1}{2}-3)$ direction is less independent?	
$\begin{pmatrix} 3 \\ 2 \end{pmatrix} (-1 - 2 + 3 - 2) + (\frac{1}{2} - 3)(3 + 2 - 1 - 0)$	
$\begin{pmatrix} 3 \\ 2 \end{pmatrix} (-1 - 2 + 3 - 2) + (\frac{1}{2} - 3)(3 + 2 - 1 - 0)$	
$\begin{pmatrix} 3 \\ 2 \end{pmatrix} (-1 - 2 + 3 - 2) + (\frac{1}{2} - 3)(3 + 2 - 1 - 0)$	
$\begin{pmatrix} 3 \\ 2 \end{pmatrix} (-1 - 2 + 3 - 2) + (\frac{1}{2} - 3)(3 + 2 - 1 - 0)$	
$\begin{pmatrix} 3 \\ 2 \end{pmatrix} (-1 - 2 + 3 - 2) + (\frac{1}{2} - 3)(3 + 2 - 1 - 0)$	
$\begin{pmatrix} 3 \\ 2 \end{pmatrix} (-1 - 2 + 3 - 2) + (\frac{1}{2} - 3)(3 + 2 - 1 - 0)$	
$\begin{pmatrix} 3 \\ 2 \end{pmatrix} (-1 - 2 + 3 - 2) + (\frac{1}{2} - 3)(3 + 2 - 1 - 0)$	
$\begin{pmatrix} 3 \\ 2 \end{pmatrix} (-1 -$	

Applications: Dator compression $1 +$ numbers instead of 10 for 2×5 matrix Data analysis (SVD will reveal all linear almost-relations among data points) · Statistics (PCA: moe/less important correlations)

- Quantum computing
- etc .

Other Product Version

\nThen (5vD): Let A be an mvn matrix of mark r. Then there exist
$$
r \geq r \geq 6,20
$$
 and orthonormal sets

\n\n $\sum u_{n} - u_{n} = 6,20$ and $\sum v_{n} - 8v_{n} = 6,20$ and $\sum v_{n} - 4v_{n} = 6,20$.\n

\n1. The u_{r} are left singular vectors of A. The u_{r} are left singular vectors of A. The u_{r} are right singular vectors of A. The u_{r} are right singular vectors of A.\n

\nCompare: for symmetries $S_{1} = 6,20$ and $S_{2} = \lambda_{r} q_{r} q_{r} + \cdots + \lambda_{r} q_{n} q_{r} q_{r} = 6,20$ and $S_{3} = \lambda_{r} q_{r} q_{r} + \cdots + \lambda_{r} q_{r} q_{r} q_{r} = 6,20$.\n

\n1. The u_{r} is the u_{r} is the u_{r} is the u_{r} is the $S_{2} = 6,20$.\n

\n1. The probability u_{r} is the $S_{1} = 6,20$.\n

\n2. The singular vectors are related by $A v_{r} = \sigma_{r} u_{r}$. The particular u_{r} is the $S_{1} = 6,20$.\n

\n2. The $S_{2} = 6,20$.\n

\n3. The $S_{3} = 6,20$.\n

So A & A^T have the same:
- singular values . singular vectors (switch right & left)

g

In particular $A'_{U_i} = g_i v_i$, so $A^{T}Av_{i} = A^{T}(\sigma_{i}u_{i}) = \sigma_{i}Au_{i} = \sigma_{i}^{2}v_{i}$ $A A^T u_i = A [\sigma_i v_i] = \sigma_i A v_i = \sigma_i^2 v_i$ This shows: $\{v_{1},...,v_{r}\}$ are orthonormal eigenvectors of ATA with eigenvalues a_{i} , a_{i} $\{u_{\nu}>u\}$ are orthonormal eigenvectors of AA^T with eigenvalues a_{1}^{2} or Naive Schoolbook Procedure to Compute SVD Let A be an men matrix of rank r . 11) Compute the nonzero eigenvalues of ATA: $\lambda \geq \lambda_2 \geq \cdots \geq \lambda_r \geq O$ counted w/multiplicity (automatically r of them, & they're positive) ² Compute orthonormal bases of eigenspaces of ATA vs orthonormal set $\{v_{9y}v_{7}\}$ st. AA $v_{7}=\lambda_{7}v_{6}$ for all i. (3) Let $a_i = \sqrt{\lambda_i}$ and $u_i = \frac{1}{\sigma_i}Av_i$. Then $\{u_{i_1},...,u_{i_n}\}$ orthonormal and $A = \sigma_i u_i v_i^T + \sigma_i u_i v_i^T + \cdots + \sigma_r u_r v_i^T$.

$$
E_3: A = \begin{pmatrix} \frac{3}{4} & \frac{6}{5} \\ \frac{4}{5} & -2 \end{pmatrix} \quad r = 2 \quad A^T A = \begin{pmatrix} \frac{3}{20} & \frac{3}{20} \\ \frac{3}{20} & \frac{3}{20} \end{pmatrix}
$$
\n
$$
P(X) = X^2 - 50X + 22S = (X - 4S)(X - S)
$$
\n
$$
A_1 = 4S \implies o_1 = \sqrt{4S} = 3\sqrt{5}
$$
\n
$$
A_2 = S \implies o_2 = \sqrt{5}
$$
\n
$$
A_3 = 5 \implies o_3 = \sqrt{5}
$$
\n
$$
A_4 = \frac{1}{2} \implies \frac{1
$$

$$
|| = \frac{1}{\sqrt{10}} \sqrt{1^2 + 3^2} = 1
$$

$$
|| = \frac{1}{\sqrt{10}} \sqrt{1^2 + 3^2} = 1
$$

$$
||u_1|| = \frac{1}{\sqrt{10}} \sqrt{3^2 + (-1)^2} = 1
$$

$$
||u_1|| = \frac{1}{\sqrt{10}} \sqrt{3^2 + (-1)^2} = 1
$$