

 $A = (f_{int}$ and $f(h_{ip})$ (then stretch) (then rotate $f(h_{ip})$

 N otes $care$ ats: · Dragonalization: start & end in Swicker basis SVD : start with $\{v_{1}, v_{2}\}$ of end with $\{u_{1}, u_{2}\}$ basis . The VT & U steps preserve lengths & angles $(rotations / Hips)$. The Σ' step can change dimensions: $\|x\|$ = ($\sum_{i=1}^{n} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ $\begin{array}{ccc} \hline \end{array}$ The $\sum_{n=1}^{\infty}$ step can flatter a sphere $\sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac{1}{i$ 亠

The Pseudo-Inverse
"Best possible" substitute for A" when A is not invertible.
Det: If
$$
S
$$
 is an mn diagonal matrix, whenever diagonal
entries σ , σ , σ , its pseudoinverse is $S^t = n \times m$
diagonal matrix, ω nonzero diagonal entries σ^t , σ or σ .
 $S^t = \begin{pmatrix} 3 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 0 \end{pmatrix} \cup S^t = \begin{pmatrix} V_3 & 0 & 0 \\ 0 & V_4 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

NB: If
$$
\sum_{(0,0)} 15
$$
 invertible $(\Rightarrow$ square) then $\sum_{i=0} 15$

$$
Def: Let A be an max matrix with SVD\n
$$
A = qu_{1}v_{1}^{T} + \dots + g_{r}u_{r}v_{r}^{T}
$$
\n
$$
I = \int_{0}^{1} \text{seudotnverse} \quad \text{a} \quad A \text{ is the max matrix}
$$
\n
$$
A^{+} = \frac{1}{q}v_{r}u_{r}^{T} + \dots + \frac{1}{q_{r}}v_{r}u_{r}^{T}
$$
\n
$$
A^{+} = V\Sigma^{+}U^{T}
$$
$$

JB: If A is invertible,
\n
$$
A^*A = (VZ^+U^+)(UZ^+U^+) = VZ^*Z^+V^+ = VV^T = \Gamma_n
$$

\n S_o $A^* = A^{-1}$
\n WB : In general, Γ_{0o} *i* ϵ_r *be have* $A^+u_i = \frac{1}{\sigma_i}v_i$
\n S_o $A^+Av_i = A^+(v_iu_i) = e_iA^+u_i = \frac{1}{\sigma_i}v_i = v_i$
\n W_{od} $A^+Av_i = O \int_{0^-}^{\infty} e_iF_v dv_i = V_{od}(A)$

$$
E_3: A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \xrightarrow{500} \frac{1}{12} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \cdot \frac{1}{12} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}
$$

\n
$$
\Rightarrow A^+ = \frac{1}{12} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1/2 & 0 \\ 0 & 0 \end{pmatrix} \cdot \frac{1}{12} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}
$$

What are AtA / AA⁺ if A is not invertible?

Prop: A*A = matrix for orthogonal projection onto
$$
R_{\infty}(A)
$$

\nAP⁺ = matrix for orthogonal projection onto $G(A)$

\nAP⁺ = matrix for orthogonal projection onto $G(A)$

\nAP⁺AP⁺ = U: Pr⁻ i≤r

\nAP⁻ = P⁻ matrix for orthogonal projection onto $R_{\infty}(A)$

\nPy⁻ = v: for i≤r block v: $R_{\infty}(A)$

\nPy⁻ = v: for i≤r block v: $R_{\infty}(A)$

\nQ⁻ P⁻ P<

Prop: For any $b^G \mathbb{R}^m$, \hat{x} = A⁻b is the shortest least squares solution of $A x = b$. $\int \frac{1}{\sqrt{1-x^2}} dx = A^{\dagger} b$ u As = AA⁺ b = prejection of b onto Col(A) = b $A\tilde{x} = b \implies \tilde{x}$ is a least $\begin{bmatrix} 1 & \text{solution} \\ 1 & \text{cyclic} \end{bmatrix}$ $NB: A⁺b = \frac{1}{\sigma_1}(u_1 \cdot b)$ $v_1 + \cdots + \frac{1}{\sigma_r}(u_r \cdot b)$ $v_r \in \mathbb{R}_{\infty}(\mathcal{A})$ Any other soln of $A = 5$ $B = x = x + y$ for ye Nul(A) $y \perp \hat{x} \in Row(A) = Nu(A) +$ \Rightarrow $\|x\|^2 - \|x+y\|^2 = \|x\|^2 + \|y\|^2 \geq \|x\|^2$ \Rightarrow \hat{x} is shortest.

Eg:
$$
A=(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix})
$$
 $b=(\begin{pmatrix} 3 \\ 1 \end{pmatrix})$
\n $\hat{x} = A^{\dagger}b = \frac{1}{4}(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix})(\begin{pmatrix} 3 \\ 1 \end{pmatrix}) = (\begin{pmatrix} 1 \end{pmatrix})$
\n $Any \text{ after least } -11 \text{ solution is}$
\n $x=(\begin{pmatrix} 1 \end{pmatrix} + a(\begin{pmatrix} 1 \end{pmatrix})$
\n $x=(\begin{pmatrix} 1 \end{pmatrix} + a(\begin{pmatrix} 1 \end{pmatrix})$

$$
\begin{array}{r}\n\frac{f_{\frac{1}{2}}}{f_{\frac{1}{2}}f
$$