Principal Component Analysis (PCA)

\nMajor application of SVD to statistics & data analysis.

\nn samples of m measurements each when moving as 5000.

\nOne measurement: eq. inditem scores
$$
x_{ij-3}x_n
$$

\nMean (average: $\mu = \frac{1}{n-1}[x-\mu^2 + \cdots + (x_n-\mu)^2]$

\nStandardly, $s^2 = \frac{1}{n-1}[x-\mu^2 + \cdots + (x_n-\mu)^2]$

\nStandard deviation: $s = \sqrt{\frac{1}{n-1}x_n} = \frac{1}{n-1}x_n$

\nTable 14: The sample is an integer and the number of samples are within the same.

\nWhere, this formula: Take starts!

Two Measures's eq. math & history scores per student.
\n
$$
\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}
$$
, $\begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$
\nMean path score: $\mu_i = \frac{1}{n} (x_1 + \dots + x_n)$
\nMean history score: $\mu_i = \frac{1}{n} (x_1 + \dots + x_n)$
\nMean history score: $\mu_i = \frac{1}{n} (y_1 + \dots + y_n)$
\nVariance matrix $s_i^2 = \frac{1}{n} (\overline{x}_1 + \dots + \overline{x}_n) \overline{x}_i = x_i - \mu_i$
\nVariance, history: $s_i^2 = \frac{1}{n} (\overline{y}_i^2 + \dots + \overline{y}_n^2) \overline{y}_i = y_i - \mu_i$
\nTotal variance: $\sqrt{z} = s_i^2 + s_i^2$

$$
E_{g} - \frac{1}{2} \left(\frac{x_i}{g_i} \right) = \left(\frac{8}{15} \right) \left(\frac{1}{2} \right) \left(\frac{12}{16} \right) \left(\frac{6}{7} \right) \left(\frac{1}{7} \right) \left(\frac{2}{1} \right) \left(\frac{1}{1} \right) = 8
$$

Subtæd²: $\left(\frac{\overline{x_i}}{g_i} \right) = \left(\frac{3}{7} \right) \left(\frac{-4}{-6} \right) \left(\frac{7}{8} \right) \left(\frac{1}{1} \right) \left(\frac{-4}{-1} \right) \left(\frac{-3}{-7} \right)$

Since
$$
\pi
$$
 matrices:

\n
$$
A_0 = \begin{pmatrix} x_1 & x_0 \\ y_1 & y_0 \end{pmatrix} = \begin{pmatrix} 8 & 1 & 12 & 6 & 1 & 2 \\ 15 & 2 & 16 & 7 & 1 \\ 15 & 2 & 16 & 7 & 1 \\ 7 & 4 & 7 & 1 \end{pmatrix}
$$
\n
$$
A = \begin{pmatrix} \overline{x}_1 & \overline{x}_0 \\ \overline{y}_1 & \overline{y}_0 \end{pmatrix} = \begin{pmatrix} 3 & -4 & 7 & 1 & -4 & -3 \\ 7 & 6 & 8 & -1 & -1 & -7 \end{pmatrix}
$$

Covariane Matrix: $S=\frac{1}{n-1}AA^{\dagger}=\frac{1}{n-1}(\frac{d\sigma f}{d\tau}P^{\text{valucts}})=\frac{1}{n-1}(\frac{\bar{x}_{1}^{2}+\cdots+\bar{x}_{n}^{2}}{\sin\theta} \times \bar{y}_{1}^{2}+\cdots+\bar{y}_{n}^{2})$ S_{0} (1,1) erry S_{1} $S_{1}^{2}=\frac{1}{n-1}(\overline{x},^{2}+...+\overline{x}_{n}^{2})$
(2,2) erry S_{2} $S_{1}^{2}=\frac{1}{n-1}(\overline{y},^{2}+...+\overline{y}_{n}^{2})$

\n- (1,2) is called **conerance** of *rows* 122.
\n- 905 the:
$$
\bar{x}
$$
; $\& \bar{y}$, usually have the same sign in above-average math goes with *above-average* height. \bar{x} ; $\& \bar{y}$, usually have the opposite signs: above-average math goes with *below* angle, \sinh \sinh

 $In our case: S = \frac{1}{5} A A^T = (25 - 35)$ $S_1^2 = 20$ $S_2^2 = 40$ $Covariance = 2520$

 SVD : soy $a^2 \geq a^2$ at the eigenvals of S. \Rightarrow σ_i , σ_z are the singular values of $\frac{1}{\sqrt{n-1}}A$ Total variance is: $(\frac{1}{\sqrt{n-1}}A)(\frac{1}{\sqrt{n-1}}A)^T = \frac{1}{n-1}AA^T = S$ $T = 5^{2} + 5^{2} = T_{r}(5) = 6^{2} + 6^{2} = T_{r}(5) = 54 \text{ m/s}$ ℓ much In our case: $\sigma \times 7.54$ $\sigma_2 \times 1.75$ $T = 0^2 + 0^2 = 60 = 20 + 40 = 5^2 + 52^2$ Let v, v = unit eigenvectors of $>$ right singular vectors of $\pi A'$ land A'

Then

$$
v_{c}
$$
 maximizes $||Ayv||$ subject to $||v|| = 1$
 $||w|| \ge ||v||$

What is
$$
Ar\sqrt{r} \cdot \frac{6}{r} \cdot \frac{1}{\sqrt{5}}
$$
.

\n
$$
Ar\sqrt{r} = \begin{pmatrix} \frac{1}{x} & \frac{1}{y} & \frac{1}{y} \\ \frac{1}{y} & \frac{1}{y} & \frac{1}{y} \end{pmatrix} = \begin{pmatrix} \frac{1}{y} & \frac{1}{y} & \frac{1}{y} \\ \frac{1}{y} & \frac{1}{y} & \frac{1}{y} \end{pmatrix}
$$
\n
$$
or \frac{1}{y} = \begin{pmatrix} \frac{1}{y} & \frac{1}{y} & \frac{1}{y} \\ \frac{1}{y} & \frac{1}{y} & \frac{1}{y} \end{pmatrix} = \begin{pmatrix} \frac{1}{y} & \frac{1}{y} & \frac{1}{y} \\ \frac{1}{y} & \frac{1}{y} & \frac{1}{y} \end{pmatrix}
$$
\n
$$
or \frac{1}{y} = \begin{pmatrix} \frac{1}{y} & \frac{1}{y} & \frac{1}{y} \\ \frac{1}{y} & \frac{1}{y} & \frac{1}{y} \end{pmatrix} = \begin{pmatrix} \frac{1}{y} & \frac{1}{y} & \frac{1}{y} \\ \frac{1}{y} & \frac{1}{y} & \frac{1}{y} \end{pmatrix}
$$
\n
$$
or \frac{1}{y} = \begin{pmatrix} \frac{1}{y} & \frac{1}{y} & \frac{1}{y} \\ \frac{1}{y} & \frac{1}{y} & \frac{1}{y} \end{pmatrix} = \begin{pmatrix} \frac{1}{y} & \frac{1}{y} & \frac{1}{y} \\ \frac{1}{y} & \frac{1}{y} & \frac{1}{y} \end{pmatrix} = \begin{pmatrix} \frac{1}{y} & \frac{1}{y} & \frac{1}{y} \\ \frac{1}{y} & \frac{1}{y} & \frac{1}{y} \end{pmatrix} = \begin{pmatrix} \frac{1}{y} & \frac{1}{y} & \frac{1}{y} \\ \frac{1}{y} & \frac{1}{y} & \frac{1}{y} \end{pmatrix} = \begin{pmatrix} \frac{1}{y} & \frac{1}{y} & \frac{1}{y} \\ \frac{1}{y} & \frac{1}{y} & \frac{1}{y} \end{pmatrix} = \begin
$$

So
$$
\|\lim_{n\to\infty}|\sqrt[n]{v}\|^{2} = \frac{1}{n-1} \Big(\int_{\sqrt[n]{n}}^{\sqrt[n]{n}} v \Big)^{2} + \cdots + \int_{\sqrt[n]{n}}^{\sqrt[n]{n}} v \Big)^{2} \Big)
$$

= **variance of the amount of the** *cols*
of A in the v-direction.

Maximize
$$
||Ay||^2
$$
: v_1 is the direction of largest nonline
MB $||\vec{r} - A^T v_1|| = \sigma = \hat{f}rst singular value of $\frac{1}{\sqrt{n-1}}A^T$
 σ_t^2 generate n V_t -direction $\frac{1}{\sqrt{n-1}}A^T v_t = \sigma_t u_t$$

$$
v_i = 1
$$

\n $v_i = 1$
\n $v_i = 1$

Let
$$
u_i = \frac{1}{\sigma_i} \cdot \frac{1}{\sqrt{n-1}} A^T v_i = |eff-singular vectors of $\frac{1}{\sqrt{n-1}} A^T$
\nSUD of $\frac{1}{\sqrt{n-1}} A$ is
\n
$$
\frac{1}{\sqrt{n-1}} A = \sigma_i v_i u_i^T + \sigma_2 v_i u_i^T
$$
\n
$$
\sigma_i v_i u_i^T = \sigma_i v_i \left(\frac{1}{\sigma_i} \frac{1}{\sqrt{n-1}} A^T v_i\right)^T = v_i \left(\frac{1}{\sqrt{n-1}} A^T v_i\right)^T
$$
\n
$$
= \frac{1}{\sqrt{n-1}} \left(\left[\left(\frac{x_i}{y_i}\right) \cdot v_i \right] v_i, \dots, \left[\left(\frac{x_i}{y_i}\right) \cdot v_i \right] v_i\right)
$$
\n
$$
= \text{projection of columns } \left(\times \frac{1}{\sqrt{n-1}}\right) \text{ onto } \text{Span}\left\{\frac{x_i}{\sqrt{n-1}}\right\} \text{ onto } \text{Span}\left\{\frac{x_i}{\sqrt{n-1}}\right\}
$$
$$

Likewise,
$$
axu_1^T = \text{projections of columns } (*\frac{1}{n-1})
$$
 onto
Span { v_2 } = Span { v_1^3 \perp (orange lines in the picture)

Interpretation:

\n\n- Total variance is 60
\n- $$
a^2 \times 56.9
$$
 is variance in the v. direction
\n- $a^2 \times 3.1$ is variance in the v. direction
\n- $b \times 3.1$ is variance in the v. direction
\n- $b \times 5ay^3$ students do $3^{28}/560 \approx 1.48$ times better
\n- $a + b$ is very than, matrix, the standard deviation from
\n- $b \times a + b = 0$
\n- $a \times 1.75$
\n

PCA Reference Sheet · A_s: mxn matrix: cols are samples vous are measurements A subtract means of news from rows of A $SS = \frac{1}{n-1} A A^{T}$: covariance matrix \Rightarrow (i, i) entry is the variance s_i^z of ith now \rightarrow $T_{\Gamma}(s)$ = $s^{2}+\cdots+s^{2}$ is the total variance \Rightarrow (i,j) entry is the covariance of rows i & j. \bullet Nonzero eigenvalues $a_i^2 \ge a_i^2 \ge -\ge a_i^2$ of \searrow \rightarrow singular values σ_{ij} . σ_{i} of $\frac{1}{\sqrt{n-1}}A$ $\int_{0}^{1} \frac{1}{\sqrt{2}} \, dx$ variance $\int_{0}^{1} 5^{2} \cdot 1 + 5^{2} \cdot 7 \cdot 10^{2} \cdot 10^{2}$ $Right$ singular vectors v_{y} \ldots v_{r} of A^{T} components \rightarrow v_i is the direction with the most variance a_i^2 = variance in v_i -direction \rightarrow v_z is the direction with the most variance subject to $v \cdot v_1 = O$; $a^2 = v \cdot c$ in $v_2 - d \cdot c$ direction 9 \rightarrow v_{n} is the direction with the least variance • $u_i = \frac{1}{\sqrt{n}} \sum_{i=1}^n A^T v_i$ δ , $V_i U_i^T$ = projections of cds $\sum_{i=1}^{\infty}$ onto $\sum_{i=1}^{\infty} V_i$ σ_i v₁ μ_i f σ_k v₂ = projections $\sum_{k=1}^{\infty}$ onto $\sum_{k=1}^{\infty} |v_{i,j}v_k|$ etc Lf (say) S_3 , S_4 , s , S_r are small then A^{∞} a v_i U_1^T + o v_i U_2 data almost the on Span z v_{ν} virz PCA detects all linear relations among your data