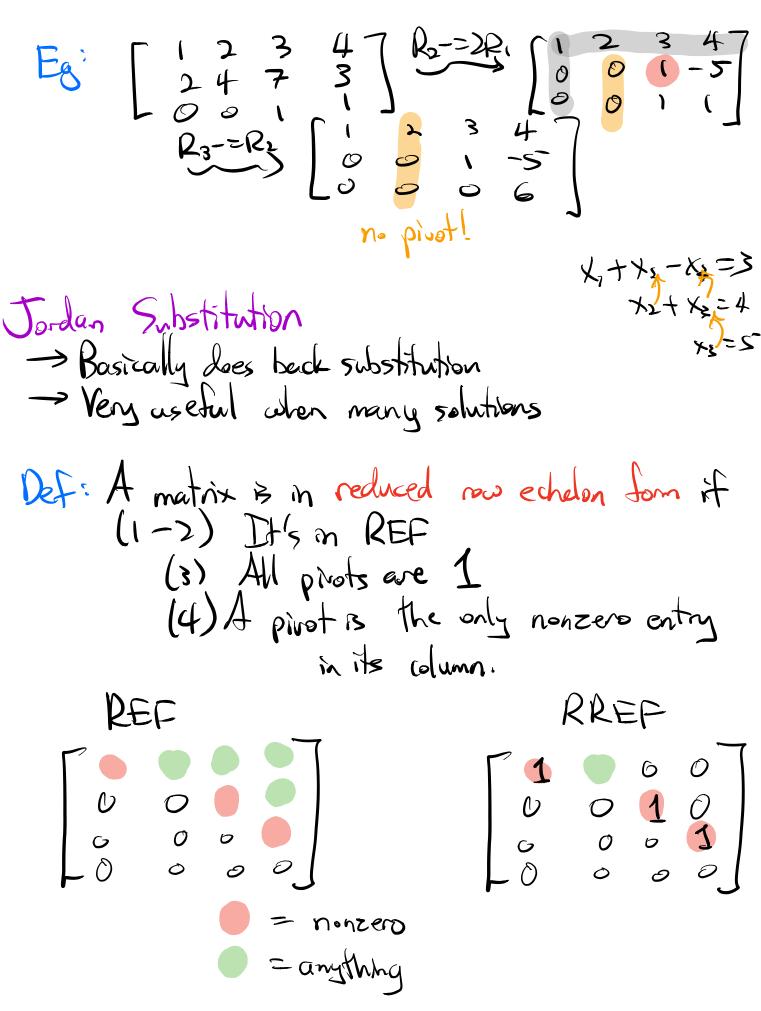
Recall: The pivot positions (pivots) of a matrix are the 1st nonzero entries of each now after putting it into REF.

Q: In an augmented metrix, what if there's
a pivot in the lost column?
$$\begin{bmatrix} 0 & 2 & 4 \\ 0 & 0 & 4 \end{bmatrix} \iff \begin{array}{c} x + \lambda y = 4 \\ y = 3 \\ 0 = 1 \end{array}$$

Def: A system is consistent it it has a solution.
inconsistent otherwise.
(inconsistent
$$\iff$$
 pivot in last column of EA(b])

Recurse until done.



1=jX X2=2 ×3=3 Q: How to put a matrix in RREF? Algorithm (Jordan Substitution): Input: A matrix in REF adjut: An equivalent matrix in RREF. Loop (starting at last pivot) (a) Scale that now so pivot = 1 (b) Use now replacements to kill entries above.

Thm: RREF is unlique -> As long as you do legal new ops, there's only one matrix in RREF that is equivalent to a starting matrix.

Elimination Using Matrices

Def: The non identity matrix is $\mathbf{I}_{n} = \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$

NB:
$$InA = A$$

elementary
Def: An elimination matrix is a matrix obtained
from In by doing one row op.
 F_{2} : $R_{i} + = 2R_{2}$ $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $R_{i} + = 2R_{2}$ $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $R_{i} \leftarrow P_{2}$ $\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$F_{3} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -2 & -3 & 0 & -7 \\ 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Multiple row ops: $A \xrightarrow{R_1 + = 2R_2} E_i A \xrightarrow{R_1 + = 2} E_i (E_i A) \xrightarrow{R_2 - R_2} E_i (E_i (E_i A))$ = Esele A

Suppose
$$RREF(A)$$
 is In
In = $E_{r} \dots E_{F} EEA = (E_{r} \dots E_{J} E_{J} E_{J})A$
 Pef : An nixn matrix is invertible if there exists
another nixn matrix B such that
 $AB = I_{n} = BA$
Notation: $B = A^{-1}$
 B is the inverse of A .
NB: "Left-inverse" = "right inverse":
 $AB = I_{n} \quad CA = I_{n}$
 $B = (CA)B = CAB = C(AB) = CI_{n} = C$
 $\implies B = C$

So, if RREP(A) is In then A⁻¹ = E.E.... E, E, = E.E... E, E, In This is the matrix you get by doing the same row ops to In.

Algorithm (Matrix Inversion) Input: a square matrix Output: the inverse, or "not invertible" · Perform Gauss-Jordan on [A I In]. If you get [In IB] then B=A-1 Otherwise A is not invertible.

Eg [1 27-1=? $\begin{bmatrix} 1 & 2 & | & 1 & 0 \end{bmatrix} = \begin{bmatrix} R_2 - 23R_1 & | & 2 & | & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & | & 0 & 0 \end{bmatrix}$ $\begin{array}{c|c} R_{2} \neq z - 2 \\ \end{array} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} z & 0 \\ 3'_{2} & -'_{2} \end{bmatrix}$ Check: $\begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Why? Suppose A is invertible. Solve Ax=b for M values of b.

$$A_{x=B} \implies A^{-1}(A_{x}) = A^{-1}b$$

$$(A^{+}A)_{x} = A^{-1}b$$

$$I_{n}x = A^{-1}b$$

$$A_{x=b} \implies x = A^{-1}b$$

Formula for $2\pi^2$ inverse: $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ If $ad-bc=0 \implies$ not invertible.