This happens when
$$RREF(A) = I_n$$
, Q: How many
 $(E_{-}E_{-1} - E_{-})A = I_n$ pivots?
below. motrices

Solving equations:

$$Ax=b \implies x=A^{-1}b$$

Formula for $2\pi^2$ inverse: $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

If
$$ad-bc=0 \implies not invertible$$
.

Elementary Matrices: Row operation $\sim E$ Undo row operation $\sim E^{-1}$ $R_1 += 2R_2 \sim \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = E$ Undo $R_1 -= 2R_2 \sim \begin{bmatrix} 1 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = E^{-1}$

Properties: (1) IF A is invertible then so is A', and $(A^{-1})^{-1} = A$. $\longrightarrow AA^{-1} = I_{a} \implies (A^{-1})^{-1} = A$ (2) IFALB are invertible then so 3 AB and $(AB)^{-1} = B^{-1}A^{-1}$ -> Why not A-B-1? AB-B-A-1 = A(BB-1)A-1 -AIA-1 $=AA^{1}=I_{n}$

 $ABA^{7}B^{7} = ??$

LU Decomposition, or How a Computer solves a Linear System (almost)

Gaussian Elimination on an non matrix takes: 1st column^c n (n-1) mult + n (n-1) add 2n (n-1) flops "floating point ops" 2nd column^c 2(n-1)(n-2) Total = 2n(n-1)+ 2(n-1)(n-2)+ ---+ 2.2.1 $= \frac{2n(n+1)(n-1)}{3} \stackrel{2}{,} \stackrel{2}{,} \stackrel{3}{,} \stackrel{1}{,} \frac{1}{3} p_{0}p_{3}$

Det: A matrix is upper/lawer thingular if all entries below above the diagonal are O. upper: $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 \end{bmatrix}$ Unitriangular: triangular and diagonal entries = 1. Eq: REF => upper -Fact A product of square apper/lover (uni) friangular matrices is apper/lower (uni) triangular. Likewise dinverses. Suppose A = LU where • Lis uni lever - D U is upper Δ . Jo solve Ax=b, two steps: (1) Solve Ly=b $y_{i} = b_{i}$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} y_{2} = b \qquad y_{1} = b_{1} \\ y_{2} + y_{2} + y_{2} = b_{3} \\ y_{7} + y_{2} + y_{4} = b_{3} \end{bmatrix}$ Solve using forward-substitution: 2 In² fleps. (>) Solve Ux=y: beckwards substitution = 2n2 flops

Total flops: (2) 1 (Jay faster!
(Je're dore!

$$Ax = LUx = L(Ux) = Ly = b$$

Recall: Row operation \equiv left mult by elementary
matrix
Suppose A can be reduced to REF who row sweps.
So all row operations are row-replecements down
 $R_{2} = 2R$, $\sum_{n=1}^{\infty} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = E_{r} = E_{r}A \implies A = (E_{r} = E_{r}E_{r})^{-1}U = LU$
lower unit A

Still have to do elimination once, but: • ~ ~ ~ flops to compute A=LU • Now only ~ n² flops to solve Ax=b for each b.

Eq: A is
$$1000 \times 1000$$
, solve $Ax=1$ for $1,000,000$ b
• Without $A=LU: \times (1000)^{2} \cdot (1000)^{2} \approx 10^{15}$ Alops
• With $A=LU: \times (1000)^{3} + (1000)^{2} \cdot (1000)^{2}$
 $\approx 10^{12}$ Alops
 $\Rightarrow 1,000$ times faster!

$$\begin{array}{c} Fg: \\ A^{2} \\$$

11 11 Check: A=LU NB: IF A is invertible, could compute A"! then x=Ath each time. Computing A⁻¹ takes 2x as long
Less numerically accurate
Solving Lux=b un² flops multiplying A-x=b ~n= Flops Ino advantage to A"! Inverses still useful, cg. to explain why LN works,