Linear Independence

\nHU#3.12

\nSpan
$$
\{\frac{2}{6}\}, \frac{2}{5}\}, \frac{2}{5}\}
$$
 is the plane $-13b_1 - 5b_2 + b_3 = 0$

\nBut if you solve $Ax = 0$ in PVF, 3 parameters \Rightarrow null

\nSpec \geq \geq 'face' (3-dimensional). What's the difference

\nThey're column!

\n $\left(\frac{-1}{5}\right) = \sum_{n=1}^{\infty} \left(\frac{2}{6}\right) - 3\left(\frac{2}{5}\right)$

\nSo want a notion of "some vector is a linear conlo of the other.

\n $\left(\frac{2}{6}\right) = \frac{2}{5}\left(\frac{1}{12}\right) + \frac{6}{5}\left(\frac{2}{1}\right)$

\n $\left(\frac{2}{6}\right) = \frac{2}{5}\left(\frac{1}{12}\right) + \frac{6}{5}\left(\frac{2}{1}\right)$

\nIf the homogeneous vector equation

\nIf the homogeneous vector equation

\nAs a nontrivial solution. Such a solution is a linear dependence relation.

Eg:
$$
S\left(\frac{2}{6}\right) - S\left(\frac{2}{1}\right) - \left(\frac{1}{12}\right) = 0
$$

\n $\Rightarrow a$ linear dependence relation.
\nGiven a linear dependence relation $\times v_1 + x_2v_2 + x_3v_3 = 0$

national
$$
\Rightarrow
$$
 \Rightarrow \Rightarrow \times ; \neq 0. Suppose $x_1 \neq 0$. Then $v_1 = \frac{1}{k_1} (x_2 k_2 x_3 k_3) \Rightarrow v_1 \in Span \{x_2 v_3\}$.
\nLD: \Rightarrow \Rightarrow <

 $\big)$

Eg Are $\left(\frac{1}{2}\right), \left(\frac{4}{6}\right), \left(\frac{7}{8}\right)$ LI? $N = \begin{pmatrix} 8 \\ 10 \end{pmatrix}$
solve $X_1 \begin{pmatrix} 2 \\ 3 \end{pmatrix} + X_2 \begin{pmatrix} 5 \\ 6 \end{pmatrix} + X_3 \begin{pmatrix} 8 \\ 10 \end{pmatrix} = C$ $\sum_{3} \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 10 \end{pmatrix} x = 0$ $\sum_{y=3}^{k=1} \begin{pmatrix} 1 & 4 & 7 \\ 0 & 2 \\ 0 & 0 & 2 \end{pmatrix}$ No free $var \gg$ no nontrivial solvis $\Rightarrow LT$. N B: It $A_{x}=0$ has a nontrivial solution $(x_{y_{x},y_{x}})$ $x_1x_1+\cdots+x_nv_n=0$ is a linear dependence relation. $A = \begin{pmatrix} \psi_1 & \cdots & \psi_n \\ 0 & \cdots & \psi_n \end{pmatrix}$ Matrix interpretations. A has LI columns \iff Ax=0 has only the trivial soln $\iff \mathsf{N}\cup\mathsf{A}\models\{\circ\}\quad$ $\Longleftrightarrow A$ has full column rank. Language: LI/LD are adjectives that describe a set of vectors. $Bod: A \rightarrow LT$ $v_i \rightarrow LP$ on $v_2 \land v_1$ $Good$ A has LI columns $\{v_{ij}v_{\mathbf{z},j}v_{\mathbf{z}}\}\geq LP$ $E_g: \{v\}$ B LL \rightleftharpoons $\sqrt{2}C$ Any set containing O is LU if V_i =

p.

$$
1v_{1} + 0v_{2} + \cdots + 0v_{n} = 0
$$
 LDR
\n• $\{v_{1}, w\}$ is LD $\Leftrightarrow v_{1} \in Span\{v_{2}\}$ or $v_{2} \in Span\{v_{1}\}$
\n $\Leftrightarrow v_{1}, v_{2} \in \dimear$
\n $\Leftrightarrow \{v_{1}, v_{2}\} \in \dimear$
\n• $Sumilar1_{3}, \{v_{1}, v_{2}, v_{3}\} \Leftrightarrow \Leftrightarrow coplanar$

Base35

\nListe: writing a subspaces
$$
V
$$
 as $Span\{v_0v_0, v_0\}$:

\nAns. we get W is $v = x_1v_1 + x_2v_2 + x_3v_3$

\nDistile: This expression can be non-uniquely.

\nUse $0 = x_1v_1 + x_2v_2 + x_3v_3$ can have not included sets.

\nIt is happens if you need to many vectors

\nUse 3 vectors to span a plane.

\nDiffs A basis $\{0, a$ subspace V is a set of vectors

\n $\{v_0, -y\}$ is in V satisfies $\{v_0, -y\}$

\n(1) $V = S_{pan}$ $S_{v_0, -y\vee 0}$

\n(2) $\{v_0, -y\}$ is LT

\nSquasi: every vector in V can be written

\n $v = x_1v_1 + \dots + x_1v_d$

\nLT: This expression is unique? only one choice of (x_0, y_1)

\nUsing $A = \begin{pmatrix} v_1^1 & v_2^1 \\ v_3^2 & v_3^2 \end{pmatrix}$ then $A \begin{pmatrix} x_1^1 \\ x_2 \end{pmatrix} = 0$

\nhas one solution. (Zero sets $v \notin V$)

makes $\bigvee_{\begin{subarray}{c} n \text{ odd} \end{subarray}} \text{log} k$ like $\bigotimes_{\mathcal{H}} \bigotimes_{\mathcal{H}} \longrightarrow X_{1}Y_{1} + \bigotimes_{\mathcal{H}} \longrightarrow \bigotimes_{\mathcal{H}} \$ xaawT

Def: The unit coordinate vectors are the columns of Γ . $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ $e_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ \cdots , $e_n = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

Eg:
$$
\{e_{1},...,\overline{e_{n}}\}
$$
 is a basis for \mathbb{R}^{n}
\nSpeins: ${\begin{pmatrix} a \\ b \\ c \end{pmatrix}} = \alpha \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$
\nLT: In has full column rank

Bases of
$$
\mathbb{R}^n
$$
: Suppose the columns of A form a
basis of \mathbb{R}^n . Let remark.
(1) span: $Col(A) = \mathbb{R}^n \Leftrightarrow full square n = m$
(2) LE: $Null(A) = \{0\} \Leftrightarrow full square n = n$
So n = m = n so A is invertible.

$$
Bays
$$
 for \mathbb{R}^n \iff columns of an invertible matrix

Notes: \mathbb{R} has many bases $eg. \quad \frac{1}{2}(\sqrt[6]{\frac{1}{2}})^2, \quad \frac{1}{2}(\sqrt[5]{\frac{1}{2}})^2, \ldots$ · Every basis of Rⁿ has a vectors.

true for any subspace. So dimension