Dimension

Def: A basis for a subspace V is a set of vectors $\{v_{i}, \ldots, v_d\}$ in V satisfying:
(i) $V =$ Span $\{v_{i}, \ldots, v_d\}$ "Spans & LI" $G\$ $\{v_{ij},\psi_{ij}\}\$ is $L\pm$ minimal spanning set for V Last time: basis for \mathbb{R}^n \leftarrow cob at an invertible $n \times n$ Any basis has n vectors. Matrix $Facts$ G Every subspace has ^a basis 2) livery basis for V has the same #vectors in it Def: The dimension of a subspace V is $dim(V)$ = # vectors in any basis for V $E_g = \frac{1}{2}$ dm $\left(\mathbb{R}^2\right) = n$ If $\{v_{ij,j}\}$ \vee $\{v_{ij}$ is LT \Rightarrow dion $\{v_{ij}$ \Rightarrow \vee $\{v_{ij}$ \Rightarrow \vee $x\}$ \Rightarrow d b/c $\{v_{i_1}, \ldots, v_{d}\}$ is a basis for its span. \cdot If $\sqrt{40}$ \Rightarrow $\sqrt{3}$ is $LT \Rightarrow$ dim S_{pan} $\sqrt{3}$ = 1 ^a line is 1 dimensional

\n- If
$$
v_j \omega
$$
 not collinear $\Rightarrow \{v_j \omega\} \in L$
\n- $\Rightarrow dm$ $\Rightarrow \alpha$ β α $\$

Bases for the Four Fundamental Sabspaces
\n
$$
A: max matrix of rank r
$$
 (r pivots)
\n $eg. A = \begin{bmatrix} 1 & 2 & -1 \\ -2 & -4 & 2 \end{bmatrix}$ 2 \times 3

Null(A)

\nThen: The vectors in the parametric vector form of the solutions of
$$
Ax=0
$$
 from a basis for $Mu(1)$.

\n
$$
\begin{bmatrix}\n1 & 2 & -1 \\
-2 & -4 & 2\n\end{bmatrix}
$$
\nHere, $x = -2y + z$ by $\begin{bmatrix} x \\ 0 \end{bmatrix} = y \begin{bmatrix} -z \\ 1 \end{bmatrix} + z \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

\nThus, $x = -2y + z$ by $\begin{bmatrix} x \\ y \end{bmatrix} = y \begin{bmatrix} -z \\ 1 \end{bmatrix} + z \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

\nThus, $\begin{bmatrix} x = -2y + z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix} = y \begin{bmatrix} -2 \\ 0 \end{bmatrix} + z \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

\nwhere, $\begin{bmatrix} x = 1 \\ 0 \end{bmatrix} = y \begin{bmatrix} -2 \\ 0 \end{bmatrix} + z \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0$

 NB : This explains why "I free variable un solo set is a line" don $Nu(A) = #free variables = # obs when pivot$

 $G(A)$ Thm: The pivet columns of A from a basis of Col(A).
 $\begin{bmatrix} 1 & 2 & -1 \ -2 & -4 & 2 \end{bmatrix}$ erects $\begin{bmatrix} 1 & 2 & -1 \ 0 & 0 & 0 \end{bmatrix}$ basis: { $\begin{bmatrix} 1/2 \ 2/3 \end{bmatrix}$ pivot column in A, not in RREF $(A \& RREF$ have different $G|_{spc}$
dim $C_0(A) = \#$ pivots = $c = rank(A)$ $2^{h\nu^{7}}$ A RREF $\begin{bmatrix} 0 & 3 & 0 & 4 \ 0 & 0 & 0 & 6 \ 0 & 0 & 0 & 0 \end{bmatrix}$ oriotals $(c_{d} 3) = 3(c_{d} 1) + 2(c_{d} 2)$
 $(c_{d} 5) = 4(c_{d} 1) + 6(c_{d} 2) - (c_{d} 4)$ $\sum_{\substack{N\downarrow\downarrow(\lambda)=N\downarrow(\lambda)\\(2)\text{ odd}}} R\begin{pmatrix}3\\2\\3\\3\end{pmatrix} = 0$ $R\begin{pmatrix} 4 \\ 6 \\ -1 \end{pmatrix} = 0$ $A\begin{pmatrix} 4 \\ 6 \\ 7 \end{pmatrix} = 0$ $\xrightarrow{\text{(cd 3)}} 3(c_{01}) + 2(c_{01}2)$
 $\xrightarrow{\text{(cd 5)}} 4(c_{01}) + 6(c_{01}2) - (c_{01}4)$ \sum $\left.\right|$

11: R&A have same linear dependance relations among their columns. $C_{\text{back}}^{\text{back}}$ Span: col 3 \in Span Spirat col S col SCE Span 3pivot cols ζ $C_1(A) =$ Span Pirot cols) LT : If a LC of pirot als of A \geq O \Rightarrow a LC of pivot cols of R is O $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0 \implies \begin{pmatrix} x_1 = 0 \\ x_2 = 0 \\ x_3 = 0 \end{pmatrix}$ $Q: \text{Find a basis for } \text{Span} \{(\frac{1}{2}), (\frac{2}{4}), (\frac{-1}{2})\}$ Systematic way: form the matrix with these columns: $\begin{pmatrix} 1 & 2 & -1 \\ -2 & -4 & 2 \end{pmatrix}$ Refer $\begin{pmatrix} 0 & 2 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ take pivot columns every span has a basis formed by deleting some vectors Row A Thm : The nonzero rows of a (R) REF of A form \circ $\cos 5$ for $\text{Row}(A)$.

 $\begin{bmatrix} 1 & 2 & -1 \\ -2 & -4 & 2 \end{bmatrix}$ REF $\begin{bmatrix} 1 & 2 & -1 \\ 0 & 0 & 0 \end{bmatrix}$ bests: $\begin{Bmatrix} 1 \\ 2 \\ -1 \end{Bmatrix}$ dim $R_{\infty}(A)$ = $#_{nonzero}$ rows in REF $=$ #pivots $=$ rank (A)

Using?
$$
Reu(A)
$$
 is unchanged by row open 0.00000.1

\nFor: ReF .

\nSo, ReF .

\nSo, $Im\left(\frac{1}{2}gt^2\right) = 0$

Nul (AT): product of elementary matrices Thm: Suppose $EA=U,$ for U a REF of A. Then the last $m-r$ rows of E *form* a basis for $N_u(A^T)$ \longrightarrow # zero rows of U

This allows you to compute bases for all 4 subspaces by dang Gauss-Jordan once. (as opposed to row reducing A^T).

Incl^e augment A by the mxm identity meetix -2 -4 2 0 1) $\lim_{R_t \to R}$ $\left[\begin{array}{ccc} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right]$ bosts A Im $\lim_{z \in P \text{ mod } U} E A = U E_{m} = E$ of U

 A : $m x n$ of rank r

Consequences

\nrank =
$$
6\omega
$$
 rank 2π Column rank

\nreal = 6ω rank $(A) = d_{im}$ Coll(A)

\nNS: A, A^T have different points

\nrank-Nullity

\ndim Mult(A) + dim Col(A) = n = # cos

\ndim Null(A) + dim Col(A) = n = # cos

\ndim Null(A^T) + dim Row(A) = m = # rows