Basis Thin let V be a subspace of dimension d and
let Vis-SMEV. Then Svis-subis is a basis of Vif
(i) Svis-subis is LI OR (2) V= Spansive-subis
IF you have the correct # vectors, don't need to
check both!
Eq: two vectors VW form a basis for a plane if
(i) not cillinear (LI) or (2) span the plane.
See: Week 5 supplement
Orthogonal Complements
Recall: V is orthogonal to w, V I U, if V·W=O
NB: V·W = VTW blc (a b c)
$$\binom{d}{e}$$
 = althetetef
Eq: Find all vectors I v=(i).
Work to solve V·X=O, ie. VTX =O, ie. NUI(VT).
VI=(1 1 1) V·X + y+z=O
pr-X=-y-z over (X) = y(i) + z(i)
check: $\binom{i}{i} \cdot \binom{i}{j} = O$ (i) $\binom{i}{i} \cdot \binom{i}{j} = O$

Find all vectors
$$\bot$$
 to $v_{i} = \binom{1}{2} \& v_{z} = \binom{1}{2}$.
Now where trying to solve $v_{i}^{T} x = 0 \& v_{z}^{T} x = 0$.
ie $\binom{-v_{i}^{T}}{-v_{z}^{T}} x = \binom{v_{i} \cdot x}{v_{z} \cdot x} = 0$
So want to compute $\operatorname{Mul}\left(\frac{-v_{i}^{T}}{-v_{z}^{T}} \right) = \operatorname{Mul}\left(\binom{1}{i} \cdot \binom{1}{i} \right)$
 $\sim \binom{1}{i} \frac{1}{i} \frac{|||}{||||} \operatorname{Rifler}\left(\binom{1}{i} \cdot \binom{1}{i} \right) - \sum_{z = 0}^{z \neq 0} \binom{x}{z} = 0$
 $\operatorname{PE}_{z = -9}^{z = -9} \operatorname{PvF}_{z = 0} \binom{x}{z} = 3\binom{-1}{0}$
 $\operatorname{Check}: \binom{1}{i} \cdot \binom{-1}{0} = 0$ $\binom{1}{i} \cdot \binom{-1}{0} = 0$

NB: if
$$x \perp v_i$$
, & $x \perp v_z$ then
 $(av_i + bv_z) \cdot x = av_i \cdot x^2 + bv_z \cdot x^2 = 0$
 $x \perp v_i$, & $x \perp v_z \iff x \perp Span \{v_i, v_z\}$

$$\begin{cases} \text{All vectors } L \\ \text{Span } v_{i,j-y}v_{n} \end{cases} = \text{Nul} \begin{pmatrix} -v_{i}T \\ \vdots \\ v_{n}T \end{pmatrix}$$

Def: Two subspaces V, U of \mathbb{R}^n are orthogonal if $v \cdot \omega = 0$ for all $v \in V$ & all $\omega \in \omega$. The orthogonal complement of V is $V^{\perp} = \{ \omega \in \mathbb{R}^n : v \cdot \omega = 0 \text{ for all } v \in V \}$ This is also a subspace of IR".

$$E_{g}: Span \{(i)\}^{\perp} = Nul(1(1))$$

$$Span \{(i), (i)\}^{\perp} = Nul(1(1))$$

$$(before)$$

$$(before)$$

NB: Span
$$f(!)$$
 & Span $f(\overline{b})$ are onthogonal
but Span $f(!)$ = Span $f(\overline{b}), (\overline{b}) \neq Span f(\overline{b})$

Facts? let V be a subspace of
$$\mathbb{R}^{n}$$
.
(1) $(V^{\perp})^{\perp} = V$ (2) dim V+ dim V^{\perp} = n

Orthogonality of the Four Subspaces
Say A has columns
$$V_{13} - v_{13}$$
.
 $Col(A)^{\perp} = Span \{V_{13}, \dots, V_{n}\}^{\perp} = Nul(-V_{1}^{T}-) = Nul(A^{T})$
Take (·)^{\perp} of both sides: $Nul(A^{T})^{\perp} = Col(A)$
Take transposes = $Row[A]^{\perp} = Nul(A)$ $Nul(A)^{\perp} = Row(A)$

Eq:
$$V = \Sigma(x,y,z)$$
: $xt2y=z$, $xtytz=0$?
Find a basis for V^{\perp} .
 $V = Nal \begin{pmatrix} 1 & 2 & -1 \\ 1 & 1 \end{pmatrix} \implies V^{\perp} = Row \begin{pmatrix} 1 & 2 & -1 \\ 1 & 1 & 1 \end{pmatrix}$
 $V^{\perp} = Span \left\{ \begin{pmatrix} 2 & -1 \\ 1 & 1 & 1 \end{pmatrix} \right\}$ not collinear
 $\implies hasis$

Pecall: the
$$(i_{JJ})$$
 entry of ATA is $(i_{I}^{+n} c_{0}) \cdot (j_{I}^{+n} c_{0})$
 $\begin{pmatrix} -v_{i}^{T} \\ -v_{2}^{T} \\ -v_{3}^{T} \end{pmatrix} \begin{pmatrix} (() \\ v_{i} v_{2} v_{3} \end{pmatrix} = \begin{pmatrix} v_{i} \cdot v_{i} & v_{i} \cdot v_{2} & v_{i} \cdot v_{3} \\ v_{2} \cdot v_{i} & v_{2} \cdot v_{2} & v_{2} \cdot v_{3} \\ v_{3} \cdot v_{i} & v_{3} \cdot v_{2} & v_{5} \cdot v_{3} \end{pmatrix}$

AT A Symmetric

HW4.13 Important Fact: NullATA) = NullA) Proof. Always NullA) is contained in NullBA) ~ So want Nul (ATA) to be untained in Nul (A). xE Nul (ATA) means ATAx=0 Ax: in Col(A) in Nul(AT) ble AT(Ax)=0 so Ax IAx => Ax=0 => x E Nul A

L'hy? easy to check
if xeV: is
$$A_{x=0}$$
?
Eg: Find implicit equations $V = \text{Span} \{(\frac{1}{2})\}$.
Tosck: $V^{\perp} = Mul(1 + 1) \stackrel{\text{PVF}}{=} \text{Span} \{(\frac{1}{2}), (\frac{-1}{2})\} = C_{1} (\frac{-1}{2})^{\perp}$
 $\Rightarrow V = C_{0} [(\frac{-1}{1}, \frac{-1}{2})^{\perp} = Mul(-1, \frac{-1}{2})$

$$=) V = \{(x,y,z): -x+y=0, -x+z=0\}$$