Orthogonal Projections
Clustion: If V is a subspace & x is a vector,
colort: the closest vector to x in V?
Closest: the vector xveV minimizing $\|x - x_0\|$ Observe: x_n is the closest vector
 $\Leftrightarrow x-x_0 \perp \sqrt{\Longleftrightarrow x-x_0}$ $x-x_0 \in V^{\perp}$. $\begin{matrix} x & x_0 \\ x & x_1 \\ x_2 & x_0 \end{matrix}$ Def: The orthogonal projection of x onto V is the
closest vector XV to X in V. It's characterized \log^3 $X_{\nu l} = x - x_{\nu} \in V^{\perp}$. The orthogonal decomposition of x relative to V is
 $x = \frac{Q}{W} + \frac{Q}{W}$ closest yector $N\theta$ = X_{v} is the prejection of x onto V^{\perp} :
 $X - X_{v^{\perp}} = X_{v}eV = (V^{\perp})^{\perp}$ How to compute? Step O: suppose $V = G/(A)$.

Want $x_v \in V = G/(A) \implies x_v = \widehat{A} \widehat{\chi}$ for $\tilde{x} \in \mathbb{R}^n$
 $V^{\perp} = M \cdot 1147$

 $V^{\perp} = N \omega (A^{\dagger})$ vant $x - x \in V^{\perp}$ $\Rightarrow A^T(x-x_v)=0 \Rightarrow A^T x = A^T x_v = A^T A x$

Solve ATA Atx vs Xv AI Eg Project I onto Col ATAet I ³ Atx l E i solve ATA Atx I3 El is to ^E xv Axel f Kal YI ^x xv to YE FYI orthogonal decomposition to YI Distance of lbs from Callas Hxvttt HFYIH ffff.fr Def The normal equation of Ax b is AtAx Ab Procedure To find the orthogonal decomposition of relative to Colla V ^c Solve the normal equation ATAE Atx for 5 ² xr AE Xue ^x Xx

(a) How to project onto Null(A)?
\n
$$
F_4: Project (b) who Null(A)?
$$
\n
$$
V^{\perp} = Row (b) who Null(A)?
$$
\n
$$
V^{\perp} = Row (b) A = Co(100)
$$
\n
$$
V^{\perp} = V^{\perp} = Co(100)
$$
\n
$$
= Xv^{\perp} = \left(\frac{V_2}{0}\right)
$$
\n
$$
= Xv^{\perp} = \left(\frac{V_2}{0}\right)
$$
\n
$$
= Xv^{\perp} = \left(\frac{V_2}{0}\right)
$$
\n
$$
= \left(\frac{V_2}{0}\right) \Rightarrow Xv = X - Xv^{\perp} = \left(\frac{V_2}{0}\right)
$$
\n
$$
= \left(\frac{V_2}{0}\right) \Rightarrow Xv = X - Xv^{\perp} = \left(\frac{V_2}{0}\right)
$$
\n
$$
= \left(\frac{V_2}{0}\right) \Rightarrow V = \left(\frac{V_2}{0}\right) \Rightarrow V = \left(\frac{V_2}{0}\right) \Rightarrow V = \left(\frac{V_2}{0}\right) \Rightarrow Xv = \frac{V_2}{0} \Rightarrow V =
$$

$$
Prejection
$$
 onto a Line^s If $V =$ $\sum_{v \cdot v} v$ if $v \neq 0$, then

$$
X_v = \frac{v \cdot x}{v \cdot v} v
$$

Eg : Project (b) onto
$$
S_{pen} \{(1)\}
$$

 $X_v = \frac{\binom{1}{0} \cdot \binom{1}{1}}{\binom{1}{1} \cdot \binom{1}{1}} = \frac{1}{2} \binom{1}{1}$

Properties of Projections: orthogonal decomposition (i) $x_v = x \Leftrightarrow x \in V$ $X = X_v + O$ (2) xy = $\circ \Leftrightarrow x \in V^{\perp}$ $X = 0 + X_{V}$ Project Matrices
Fact: A has full column rank RTA is invertible Suppose A has full cd rank, $V = Col(A)$.
To compute x_v :
 $A^T A \hat{x} = A^T x \implies \hat{x} = (A^T A)^{-1} A^T x$ a basis for V $H = A(A^T A)^{-1}A^T$ $H_{en} = A(x^T A)^{-1}A^T x$ $E_{\mathcal{A}}: V=C_{0}(\begin{pmatrix}1&1\\ 1&0\end{pmatrix}) \cup A^{T}A=(\begin{pmatrix}3&2\\ 2&2\end{pmatrix})\rightarrow (A^{T}A)^{-1}=\frac{1}{2}(\begin{pmatrix}2&-2\\ -2&3\end{pmatrix})$ $P = A (A^{T}A)^{-1}A^{T} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \frac{1}{2} \begin{pmatrix} 2 & -2 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ $=\left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 \end{array}\right) \in \left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{array}\right)$ Check: $x = l_0$ $y = l_0$
 $y = l_0$ $y = l_1$
 $y = l_1$
 $y = l_2$
 $y = l_2$
 $y = l_1$
 $y = l_2$
 $y = l_2$
 $y = l_1$
 $y = l_2$
 $y = l_2$
 $y = l_1$
 $y = l_2$
 $y = l_2$
 $y = l_1$
 $y = l_2$ Def: Let V be a subspace. The prejection matrix
onto V is the matrix P_Y such that $P_vx = x_v$ for all x.

Proveduse: To compute
$$
Pv
$$
:

\n(1) Find a **basis** for V.

\n(2) Let $A = \text{the matrix with } \text{base vectors}$.

\n(3) $Pv = A(A^{T}A)^{-1}A^{T}$

\n**Eg:** $V = C_{01} \left(\frac{1}{5} \sum_{q=0}^{4} \frac{1}{q} \right) \xrightarrow{use} A = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$

\nWhat $V = S_{\text{pair}} \{v_1\}$ is a line? $V = C_{01}(A) A = v$

\n $ATA = v^{T}v = v \cdot v$

\n $\Rightarrow P = v \left(\frac{1}{v \cdot v} \right) vT = \frac{1}{v \cdot v} v vT$ "outer product".

$$
F_8: V = \frac{1}{2} \left(\begin{array}{c} 1 \\ 1 \end{array}\right) = \frac{1}{2} \left(\begin{array}{c} 1 \\ 1 \end{array}\right)
$$
\nCheck: $x_0 = P_0 x$
\n
$$
P_0 x = \frac{1}{2} \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \left(\begin{array}{c} 1 \\ 0 \end{array}\right) = \frac{1}{2} \left(\begin{array}{c} 1 \\ 1 \end{array}\right)
$$

Problem Matrix For a Line
If V = $Span\{v\}$ for $v \neq 0$
$Pv = \frac{1}{v \cdot v} v v \neq 0$

Properties of Projection Matrices HW #6.8 $1)$ $P = P$ $(2) P = P$ $(3) I_n = P_V + P_V$

Moral Darde first it it's easier to compute Pv or Pv, then compute the easier one