Least Squares or Almost Solving Ax=b

Est law measure 3 data points
(0,6), (1,0], (2,0)
that use supposed to lie on a line
(but they don't due to measurement error)
Q: What line do they wont to be on?
Line:
$$y = Cx+D$$

 $G=C\cdot O+D$ (0,6) is on the line
 $D=C\cdot[+D]$ (1,0) is on the line
 $D=C\cdot2+D$ (2,0) is on the line
 $N = Ax = b$ $A = \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix} x = \begin{pmatrix} 0 \\ 0 \end{bmatrix} b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$
Inconsistent! What to do?

key dea: Ax=b has a solution
$$\iff$$
 be(o1(A)
Solve Ax=b where be(o1(A) is as close to
b as possible.
 $b = b_v = orthogonal projection anto V=(o1(A))$
We know how to compute b: solve
 $ATAx=ATb$ \implies b=Ax
and we have \hat{x} too.

$$\begin{aligned} \hat{\chi} = \begin{pmatrix} s_{3}/88 \\ -379/440 \\ -41/444 \end{pmatrix} \longrightarrow y = \frac{53}{88} \times^{1} - \frac{379}{440} \times -\frac{41}{44} \\ \hat{b} = A\hat{\chi} = \begin{pmatrix} y(-1) \\ y(2) \\ y(3) \end{pmatrix} \qquad \hat{b} = \begin{pmatrix} v_{2} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = A\hat{\chi} = \begin{pmatrix} y(-1) \\ y(2) \\ y(3) \end{pmatrix} \qquad \hat{b} = \begin{pmatrix} v_{2} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{2} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{2} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{2} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{2} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{2} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{2} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{2} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{2} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{2} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{2} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{2} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{2} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{2} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{2} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{2} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{2} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{2} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \\ 2 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \\ -1 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \\ -1 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \\ -1 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \\ -1 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \\ -1 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \end{pmatrix} \\ \hat{b} = \begin{pmatrix} v_{1} \\ -1 \\ -1 \end{pmatrix} \\ \hat{$$

Orthogonal Column
Def: Nanzero vectors
$$\{u_{i}, ..., u_{n}\}$$
 is called
• orthogonal: $u_{i} \cdot u_{j} = 0$ when $i \neq j$
• orthonormal: orthogonal & $u_{i} \cdot u_{i} = 1$
(orthogonal unit vectors)
Matrix interpretation
 $Q = \begin{pmatrix} u_{i} - u_{n} \\ u_{i} \end{pmatrix} \longrightarrow QTQ = \begin{pmatrix} u_{i} \cdot u_{i} & u_{i} \cdot u_{z} - u_{z} \cdot u_{n} \\ u_{z} \cdot u_{i} & u_{z} \cdot u_{z} - u_{z} \cdot u_{n} \\ u_{z} \cdot u_{i} & u_{z} \cdot u_{z} - u_{z} \cdot u_{n} \end{pmatrix}$

• or thogonal =
$$Q^{T}Q$$
 is diagonal (& invertible)
• or thonormal: $Q^{T}Q = I_{A}$
• Q^{c} does this mean $Q^{-1} = Q^{T}P$ Only if space.
Eas' $\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$ is orthogonal: $\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 0$
 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$ is orthogonal: $\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 0$
 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$ is orthonormal.
Drive $\left\{ \sum_{i=1}^{r} \begin{pmatrix} 1 \\ i \end{pmatrix}, \frac{1}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$ is orthonormal.
NB: Can always turn an orthogonal set into an orthogonal set into an orthogonal set into an orthogonal set into an orthogonal one by dividing by the lengths.
Properties: Say Q has orthonormal columns.
 $(1) Q^{T}Q = I_{A}$
 $(2) Q$ has full column renk:
 $\rightarrow Mul(Q) = Mul(QTQ) = Mul(I_{A}) = 50$

(3) $(Q_x) \cdot (Q_y) = x \cdot y$ $Q \cdot deesn't change angles$ $<math>\rightarrow (Q_x) \cdot (Q_y) = (Q_x) T Q_y) = x T Q T Q_y$ $= x^T I n y = x^T y = x \cdot y$ (4) $\|Q_{x}\| = \|x\|$ ie "Q. doesn't change lengths" $\rightarrow \|Q_{x}\|^{2} = |Q_{x}| \cdot (Q_{x}) \stackrel{\text{doesn't change lengths}}{= x \cdot x} = \|x\|^{2}$ (3) If V=GI(Q) and Pv=projection matrix onto V then $P_v = QQ^T$ $\rightarrow P_{r} = Q(Q^{\dagger}Q)^{-1}Q^{\dagger} = QI_{r}Q^{\dagger} = QQ^{\dagger},$