Math 218D Problem Session

Week 10

1. The dynamics of a diagonal matrix

Consider the matrix $A = \begin{pmatrix} 2 & 0 \\ 0 & 1/2 \end{pmatrix}$.

- a) For each of the following vectors, plot v, Av, and A^2v :
 - (1) v = (1,0)
 - (2) v = (0, 1)
 - (3) v = (1, 1)
- **b)** For each of the same vectors, sketch the shape you get by connecting the dots between the points ..., $A^{-2}v$, $A^{-1}v$, v, Av, $A^{2}v$,....
- **c)** For the vector v = (1, 1), what direction is the vector $A^n v$ approximately pointing when n is very large? In other words, what unit vector does $\frac{A^n v}{||A^n v||}$ approximate when n is very large?
- **d)** For the vector v = (1, 1), what direction is $A^{-n}v$ approximately pointing when n is very large?

2. The dynamics of a diagonalizable matrix

Consider the matrix A with A(1,1) = 3(1,1) and A(1,-2) = 2(1,-2). In other words, A is diagonalizable and you have been told the eigenvectors and eigenvalues.

- **a)** For each of the following vectors, plot v, Av, A^2v :
 - (1) v = (1, 1)
 - (2) v = (1, -2)
 - (3) v = (2, -1)

You can do this without computing the matrix A!

- **b)** For each of the same vectors, sketch the shape you get by connecting the dots between the points ..., $A^{-2}v$, $A^{-1}v$, V, Av, $A^{2}v$,
- **c)** For the vector v = (2, -1), what direction is the vector $A^n v$ approximately pointing when n is very large?
- **d)** For the vector v = (2, -1), what direction is $A^{-n}v$ approximately pointing when n is very large?

3. Dynamics with complex eigenvalues

Consider the matrices
$$A = \begin{pmatrix} 0 & -1/2 \\ 1/2 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$.

- a) Plot the points (4,0), A(4,0), $A^2(4,0)$, $A^3(4,0)$, and $A^4(4,0)$. Connect the dots between these points. Predict the shape that you would get if you continued to $A^5(4,0)$, $A^6(4,0)$,....
- **b)** Plot the points (1,0), B(1,0), $B^2(1,0)$, $B^3(1,0)$, and $B^4(1,0)$. Connect the dots between these points. Predict the shape that you would get if you continued to $B^5(4,0)$, $B^6(4,0)$,....
- c) Compute the eigenvalues of A and B. Write each eigenvalue in polar coordinates $z = re^{i\theta}$. What do these eigenvalues explain about your pictures from a) and b)?
- **d)** Find the eigenvectors of B, $Bv_1 = \lambda_1 v_1$ and $Bv_2 = \lambda_2 v_2$, where λ_1 and λ_2 are the eigenvalues you found for B in **c**).
- e) Find complex scalars a, b such that $(1,0) = av_1 + bv_2$.
- **f)** Compute $B^n(1,0)$ in terms of complex exponentials.
- g) Use Euler's formula $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ to write $B^n(1,0)$ in terms of trig. functions (no complex numbers should appear in your final answer).
- **h)** Can you predict a formula for $A^n(4,0)$ in terms of trig. functions?

4. A differential equation

(There was a typo in the original problem from discussion session, now fixed.) Consider the system of differential equations

$$x'(t) = 3x(t) + 2y(t)$$

$$y'(t) = 4x(t) - 4y(t)$$

a) Write this as a matrix differential equation

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}.$$

What is the matrix *A*?

- **b)** For this matrix A, find the eigenvalues λ_1 and λ_2 , as well as the eigenvectors w_1 and w_2 .
- c) Every solution is of the form $(x(t), y(t)) = a_1 e^{\lambda_1 t} w_1 + a_2 e^{\lambda_2 t} w_2$. If you want the solution to have initial value (x(0), y(0)) = (1, 1), which scalars a_1 and a_2 should you choose?
- **d)** Plug the solution with initial value (x(0), y(0)) = (1, 1) to the differential equation, and confirm that it is a solution.
- e) For the solution you found in c), compute (x(1), y(1)).