
Math 218D Problem Session

Week 10

1. The dynamics of a diagonal matrix

Consider the matrix A=
�

2 0
0 1/2

�

.

a) (1) v = (1, 0)

(2) v = (0, 1)

(3) v = (1, 1)

b) We’ll draw all the shapes on the same plot:



c) The limit of the unit vectors Anv
||Anv|| , as n approaches ∞, is (1, 0). We can see

this from the picture, but can also compute this using limits. First,

Anv
||Anv||

=
2n(1, 0) + 2−n(0, 1)
p

22n + 2−2n
=
(1, 0) + 2−2n(0, 1)
p

1+ 2−4n
,

where the second equality comes from dividing both the numerator and de-
nominator by 2n. Since limn→∞(1, 0)+2−2n(0, 1) = (1, 0) and limn→∞

p
1+ 2−4n =

1, we find that

lim
n→∞

Anv
||Anv||

=
(1, 0)

1
= (1,0).

d) The limit of the unit vectors Anv
||Anv|| , as n approaches −∞, is (0,1).



2. The dynamics of a diagonalizable matrix
Consider the matrix A with A(1,1) = 3(1, 1) and A(1,−2) = 2(1,−2). In other

words, A is diagonalizable and you have been told the eigenvectors and eigenvalues.

a) For each of the following vectors, plot v, Av, A2v:

(1) v = (1, 1)

(2) v = (1,−2)

(3) v = (2,−1)



b) We’ll draw all the shapes at once, once zoomed out and once zoomed it. The
dot indicates the origin.



c) The limit of the unit vectors Anv
||Anv|| , as n approaches ∞, is 1p

2
(1, 1). This is

not apparent from the pictures we drew, because we would need to zoom out
much further to see this. But, as in Problem 1, the direction gets closer to the
eigenspace of the larger eigenvalue.

d) The limit of the unit vectors Anv
||Anv|| , as n approaches −∞, is 1p

5
(1,−2). As in

Problem 1, the direction gets closer to the eigenspace of the smaller eigenvalue.



3. Dynamics with complex eigenvalues

Consider the matrices A=
�

0 −1/2
1/2 0

�

and B =
�

1 −1
1 1

�

.

a) The points (4,0), A(4,0), A2(4,0), A3(4, 0), and A4(4,0):

The shape is a CCW spiral in towards the origin.

b) The points (1, 0), B(1,0), B2(1, 0), B3(1, 0), and B4(1, 0) (and also B5(1, 0),
as it helps see the pattern):



c) The eigenvalues of A are 1/2i = 1/2eπ/2i and −1/2i = 1/2e−π/2i. These eigen-
values have |λ| = 1/2 and angle θ = ±π/2. This is related to the distance of
the points from the origin shrinking in length by 2 after each step, and rotating
by the angle π/2.

The eigenvalues of B are (1 + i) =
p

2eπ/4i and (1 − i) =
p

2e−π/4i. The
length

p
2 is related to the distance of the points from the origin growing byp

2 after each step, and rotating by the angle π/4.

d) An eigenvector v1 = (x1, x2) of B for the eigenvalue λ1 = (1+ i) is a solution
to −i x1 + x2 = 0, so we’ll use v1 = (1, i) as the eigenvector.

An eigenvector for λ2 = λ1 is v2 = v1 = (1,−i).

e) (1, 0) = 1
2 v1 +

1
2 v2 (if you had a different choice of eigenvectors, these scalars

might have been complex, but with our choice they are not.)

f) Bn(1, 0) = 1
2λ

n
1v1 +

1
2λ

n
2v2.

g) We’ll use Euler’s formula eiθ = cos(θ ) + i sin(θ ).
The first component of Bn(1,0) is

1
2

p
2

n
(en(π/4)i + e−n(π/4)i) =

1
2

p
2

n
(cos(nπ/4) + i sin(nπ/4) + cos(−nπ/4) + i sin(−nπ/4))

=
1
2

p
2

n
(2cos(nπ/4) + 0i) =

p
2

n
cos(nπ/4).

(We used that that cos(−nπ/4) = cos(nπ/4) while sin(nπ/4) = − sin(nπ/4).)



The second component of Bn(1,0) is
1
2

p
2

n
(ien(π/4)i − ie−n(π/4)i) =

1
2

p
2

n
(i cos(nπ/4)− sin(nπ/4)− i cos(−nπ/4) + sin(−nπ/4))

=
p

2
n
sin(nπ/4).

Therefore the vector Bn(1,0) has closed form

Bn(1,0) = (
p

2
n
cos(nπ/4),

p
2

n
sin(nπ/4)).

h) Based on the eigenvalues for A and the picture, we might guess

An(4, 0) = (4(1/2)n cos(nπ/2), 4(1/2)n sin(nπ/2)).



4. A differential equation
(There was a typo in the original problem from discussion session, now

fixed.)
Consider the system of differential equations

x ′(t) = 3x(t) + 2y(t)

y ′(t) = 4x(t)− 4y(y)

a) The matrix A in the matrix differential equation
�

x ′

y ′

�

= A
�

x
y

�

is A=
�

3 2
4 −4

�

.

b) This matrix A has characteristic polynomial λ2+λ−20, with eigenvalues λ1 =
−5 and λ2 = 4. The eigenvectors are w1 = (−2,8) and w2 = (−1, 2).

c) Every solution is of the form (x(t), y(t)) = a1eλ1 t w1 + a2eλ2 t w2. If you want
the solution to have initial value (x(0), y(0)) = (1,1), your scalars must solve
(1, 1) = a1w1 + a2w2. You can solve this by solving the system of linear equa-

tions
�

−2 −1 1
8 2 1

�

. This has solution a1 = −5/4, a2 = 3/2, i.e. −5/4(−2,8)+

3/2(−1,2) = (1,1).

d) The solution is u(t) = a1eλ1 t w1 + a2eλ2 t w2. When we plug this into the dif-
ferential equation, we get u′(t) = a1λ1eλ1 t w1 + a2λ2eλ2 t w2 on one side, and
Au(t) = a1eλ1 t(λ1w1)+a2λ2eλ2 t(λ2w2) on the other. Since these are equal, u(t)
solves the differential equation. (We didn’t actually need to use the values for
a1 and a2 to check this.)

e) The value of (x(1), y(1)) is−5/4eλ1 w1+3/2eλ2 w2 = (5/2e−5−3/2e4,−10e−5+
3e4). You don’t need to simplify any further than this.


