Math 218D Problem Session

Week 11

1. Shape of quadratic forms

For each of the following quadratic forms:

(1) Plot the equation $q(x, y) = 1$ using a computer, and describe the shape (for example, for **a)** you should get an ellipse in **R** 2 , not an elliptic paraboloid in \mathbf{R}^3).

(2) Find the 2 × 2 symmetric matrix $S = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ such that

$$
q(x,y) = \left(x \quad y\right)S\left(\begin{array}{c}x\\y\end{array}\right) = ax^2 + 2bxy + cy^2.
$$

- (3) Recall that a symmetric matrix is **positive-definite** if all of its eigenvalues are positive. Test if the symmetric matrix *S* is positive-definite or not using the **pivot test**: Put *S* into REF without doing row-swaps or scaling. (If you need to do a row-swap, the matrix is not positive-definite.) If the diagonal entries of the REF are all positive, then *S* is positive-definite.
- (4) What does the positive-definiteness of *S* have to do with the shape from (1)? You may need to do many examples until you see the pattern.
- **a**) $q(x, y) = 2x^2 + 3y^2$
- **b**) $q(x, y) = x^2 5y^2$
- **c**) $q(x, y) = y^2$
- **d**) $q(x, y) = -3x^2 2y^2$
- **e**) $q(x, y) = x^2 + 3xy + y^2$
- **f**) $q(x, y) = 2x^2 + 4xy + y^2$
- **g**) $q(x, y) = x^2 4xy + 5y^2$

Our final two quadratic forms are in 3 variables: this means that *S* is a 3 × 3

matrix, and
$$
q(x, y, z) = (x \ y \ z)S\begin{pmatrix} x \\ y \\ z \end{pmatrix}
$$
.

h) $q(x, y, z) = x^2 + y^2 + z^2 + xy + yz + xz$ **i)** $q(x, y, z) = x^2 + y^2 + z^2 + 2xy + 2yz + 2xz$

2. Diagonalizing quadratic forms

Consider the quadratic form

$$
q(x, y) = \frac{5}{2}x^2 + 3xy + \frac{5}{2}y^2.
$$

a) What is the symmetric matrix *S* so that $q(x, y) = \begin{pmatrix} x & y \end{pmatrix} S$ *x y* λ ?

- **b**) Find the symmetric diagonalization, $S = QDQ^T$, where the matrix *Q* is orthonormal. The columns of Q are orthonormal eigenvectors v_1 and v_2 , with eigenvalues λ_1 and λ_2 .
- **c)** The quadratic form for the diagonal matrix D is $\left(x_{0} \quad y_{0}\right)D$ $\left(x_{0}\right)$ *y*0 $= \lambda_1^2$ $^{2}_{1}x_{0}^{2} +$ $λ₂²$ $^{2}_{2}y_{0}^{2}$ \int_0^2 . Plot $q(x, y) = 1$ and $\lambda_1 x_0^2 + \lambda_2 y_0^2 = 1$. What is the geometric relationship between these shapes?
- **d**) Confirm that $q(x, y) = \lambda_1 x_0^2 + \lambda_2 y_0^2$ $\frac{2}{0}$, where we relate the variables x_0 and y_0 to the variables *x* and *y* using $\begin{pmatrix} x_0 \\ y_1 \end{pmatrix}$ *y*0 λ $= Q^T \left(\frac{x}{y} \right)$ *y* λ .
- **e**) Using **d**), explain why the equation $q(x, y) = 1$ describes an ellipse. How does this relate to the **eigenvalue test** for positive-definite matrices?
- **f)** Using **d**), explain why the function $q(x, y)$ is always positive (unless $x = y =$ 0). How does this relate to the **positive-energy test** for positive-definite matrices?
- **g**) What are the lengths of the major and minor axes of the ellipse $q(x, y) = 1$? **Hint:** What are the lengths of the major and minor axes of the ellipse $\lambda_1 x_0^2$ + $λ_2y_0^2 = 1?$
- **h**) What are the directions of the major and minor axes of the ellipse $q(x, y) = 1$?
- **i)** Consider the **constrained optimization** problem: what is the maximum value of the function $q(x, y)$ on the unit circle $x^2 + y^2 = 1$? at what point (x, y) on the unit circle does *q* achieve the maximum?

Hint: First answer these questions for the quadratic form $\lambda_1 x_0^2 + \lambda_2 y_0^2$ $\frac{2}{0}$.

3. *LDL^T* **decomposition**

Find the *LDL^T* decomposition of the following positive-definite symmetric matrices, by:

- (1) Computing the $A = LU$ decomposition.
- (2) Setting $D =$ the diagonal matrix with same diagonal entries as U .

a)
$$
S = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}
$$

b) $S = \begin{pmatrix} 4 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 4 \end{pmatrix}$

4. Relation to the quadratic formula

For 2 × 2 symmetric matrices $S = \begin{pmatrix} a & \frac{1}{2} \\ \frac{1}{2}b & \frac{1}{2} \end{pmatrix}$ $rac{1}{2}b$ 1 $\begin{pmatrix} a & \frac{1}{2}b \\ \frac{1}{2}b & c \end{pmatrix}$, there is an easy test for positivedefiniteness, the **discriminant test**:

S is positive-definite if and only if both $a > 0$ and $b^2 - 4ac < 0$.

Let's verify this test in two ways, by relating it to other tests.

a) Method one: Relate the discriminant test to the **determinant test**: *S* is positivedefinite if and only if det((*a*)) *>* 0 and det($\int a^{-\frac{1}{2}}$ $rac{1}{2}b$ 1 $\begin{pmatrix} a & \frac{1}{2}b \\ \frac{1}{2}b & c \end{pmatrix}$) > 0.

b) Method two:

(1) Show that the quadratic form $q(x, y) = (x, y)^T S(x, y)$ equals $q(x, y) = ax^2 + bx y + c y^2$

and factors into

and factors into

$$
q(x,y) = a(x - \frac{-b + \sqrt{b^2 - 4ac}}{2}y)(x - \frac{-b - \sqrt{b^2 - 4ac}}{2}y).
$$

(2) If $b^2 - 4ac < 0$, explain why $q(x, y) \neq 0$ for all real numbers *x*, *y* (not both zero).

This means that either $q(x, y) > 0$ for all $(x, y) \neq (0, 0)$ or $q(x, y) < 0$ for all $(x, y) \neq (0, 0)$.

(3) If both $a > 0$ and $b^2 - 4ac < 0$, explain why $q(x, y) > 0$ for all real numbers *x*, *y* (not both zero). **Hint:** If $a > 0$, can you find a point (x, y) where $q(x, y) > 0$?

This show that **if** *S* **satisfies the discriminant test, it satisfies the energy test.**