Math 218D Problem Session

Week 12

1. Rules of vector SVD

Which of the following $A = \sigma_1 u_1 v_1^T + \dots + \sigma_r u_r v_r^T$ are valid singular value decompositions? Why/why not?

a)
$$A = 1(1,0)(1,0)^T + 3(0,1)(0,1)^T$$

b)
$$A = 4(1,0)(0,1)^T + 3(0,1)(1,0)^T$$

- c) $A = 3(1,-1)(1,0)^T + 2(1,1)(0,1)^T$
- **d)** $A = -3(1/\sqrt{2}, -1/\sqrt{2}, 0)(1, 0)^T + 2(0, 0, 1)(0, 1)^T$
- e) $A = 3(-1/\sqrt{2}, 1/\sqrt{2}, 0)(1, 0)^T + 2(0, 0, 1)(0, 1)^T$
- **f)** $A = 5(1,0,0)(0,1)^T + 3(0,1,0)(1,0)^T + 2(0,0,1)(0,1)^T$

- **2.** The matrix SVD Suppose that *A* is an $m \times n$ matrix of rank *r*, with SVD $A = U\Sigma V^T$.
 - a) U is a ____ × ____ matrix, Σ is a ____ × ____ matrix, and V is a ____ × ____ matrix. The matrices U and V are _____ matrices. The first ____ diagonal entries of Σ are > 0.
 - **b)** Expand $A^T A$ using $A = U \Sigma V^T$ to see that the matrix $A^T A$ has symmetric diagonalization $Q_1 D_1 Q_1^T$, with $Q_1 = _$ and $D_1 = _$. What are the eigenvectors of $A^T A$? What are the eigenvalues?
 - c) Expand AA^T using $A = U\Sigma V^T$ to see that the matrix AA^T has symmetric diagonalization $Q_2 D_2 Q_2^T$, with $Q_2 = _$ and $D_2 = _$. What are the eigenvectors of AA^T ? What are the eigenvalues?
 - **d)** Suppose that $i \le r$. The left singular vector u_i is the *i*th column of U, the singular value σ_i is the *i*th diagonal entry of Σ , and the right singular vector v_i is the *i*th column of V. Explain why $Av_i = \sigma_i u_i$ by computing $V^T v_i, \Sigma V^T v_i$, and $U\Sigma V^T v_i$.

3. Computing the vector SVD

To find the vector SVD of a matrix *A*:

- (1) Find the non-zero eigenvalues λ₁ ≥ λ₂ ≥ ··· λ_r > 0 of A^TA.
 (2) Find a orthonormal basis of each of the λ_i eigenspace of A^TA. Listed in order of decreasing eigenvalue, these are the right singular vectors v_1, \dots, v_r .
- (3) For i = 1, ..., r, set $\sigma_i = \sqrt{\lambda_i}$ and $u_i = \frac{Av_i}{\sigma_i}$. These are the singular values and left singular vectors.
- (4) Write $A = \sigma_1 u_1 v_1^T + \dots + \sigma_r u_r v_r^T$. Compute the vector SVD of each of the following matrices:

a)
$$A = \begin{pmatrix} 0 & -1 \\ 3 & 0 \end{pmatrix}$$

b) $A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -3 & 0 & 0 \end{pmatrix}$
c) $A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$

4. Computing the matrix SVD

To find the matrix SVD $A = U\Sigma V^T$ of a matrix A:

- (1) Find the symmetric diagonalization VDV^T of A^TA , where the eigenvalues are listed in decreasing order: $\lambda_1 \ge ... \ge \lambda_n$. The rank *r* of *A* is the same as the number of non-zero eigenvalues of A^TA (counted with multiplicity).
- (2) The columns of *V* are the right singular vectors v_1, \ldots, v_r , followed by an orthonormal basis v_{r+1}, \ldots, v_n of Nul(*A*).
- (3) For i = 1, ..., r, set $\sigma_i = \sqrt{\lambda_i}$ and $u_i = \frac{Av_i}{\sigma_i}$. These are the singular values and left singular vectors.
- (4) We still need the vectors u_{r+1}, \ldots, u_m : find these by computing an orthonormal basis of Nul(A^T) (using RREF to find a basis, Gram–Schmidt to replace it with an orthonormal basis).
- (5) Finally, the matrix U is the matrix with columns u₁,..., u_m, the matrix V was found in (1), and Σ has its first r diagonal entries as σ₁,..., σ_r and the remaining entries of Σ being zero.

Compute the matrix SVD of each of the following matrices:

a)
$$A = \begin{pmatrix} 0 & -1 \\ 3 & 0 \end{pmatrix}$$

b) $A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -3 & 0 & 0 \end{pmatrix}$
c) $A = \begin{pmatrix} 1 & 2 \\ 1 & 2 \\ 2 & 4 \end{pmatrix}$

5. Sums of rank 1 matrices

This final problem is not about SVDs, but just about sums of rank one matrices.

a) Without computing A, explain why

$$A = (1, 2, 1)(1, 1)^{T} + (1, -1, 1)(-1, 1)^{T}$$

is a rank 2 matrix.

Hint: compute A(1,1) and A(-1,1), and use this to show that (1,2,1) and (1,-1,1) are in the column space of *A*.

- **b)** If $A = u_1 v_1^T + \dots + u_r v_r^T$ for some vectors $u_i \in \mathbb{R}^m$ and $v_j \in \mathbb{R}^n$, explain why the rank of *A* is at most *r*. **Hint:** Show that the subspace Col(*A*) is contained in the span Span $\{u_1, \dots, u_r\}$, which is at most *r*-dimensional.
- c) If the vectors $u_1, \ldots, u_r \in \mathbf{R}^m$ are a linearly independent set of vectors, and the vectors $v_1, \ldots, v_r \in \mathbf{R}^n$ are also linearly independent, prove that

$$A = u_1 v_1^T + \dots + u_r v_r^T$$

has rank equal to *r*.

Hint: Show that there is a vector $v \in \mathbf{R}^n$ which is orthogonal to v_2, \ldots, v_r , but $v_1^T v \neq 0$. Compute Av, and use this to show that $u_1 \in \text{Col}(A)$. The same idea shows that u_2, \ldots, u_r are all in Col(A).