
Math 218D Problem Session

Week 12

1. Rules of vector SVD

a) A= 1(1,0)(1,0)T+3(0,1)(0,1)T is not an SVD since 1< 3, but singular values
must be in decreasing order.

b) A= 4(1,0)(0,1)T + 3(0,1)(1,0)T is an SVD.

c) A= 3(1,−1)(1, 0)T + 2(1, 1)(0, 1)T is not an SVD, since (1,−1) and (1,1) are
not unit vectors.

d) A= −3(1/
p

2,−1/
p

2, 0)(1, 0)T +2(0,0, 1)(0,1)T is not an SVD since −3< 0,
but singular values must be positive.

e) A= 3(−1/
p

2, 1/
p

2,0)(1,0)T + 2(0,0, 1)(0,1)T is an SVD.

f) A = 5(1, 0,0)(0, 1)T + 3(0,1, 0)(1,0)T + 2(0, 0,1)(0,1)T is not an SVD, since
the vectors (0,1), (1,0), (0, 1) are not orthogonal.



2. The matrix SVD Suppose that A is an m×n matrix of rank r, with SVD A= UΣV T .

a) U is an m×m matrix, Σ is a m×n matrix, and V is a n×n matrix. The matrices
U and V are orthogonal matrices. The first r diagonal entries of Σ are > 0.

b) AT A= (UΣV T )T UΣV T = VΣT U T UΣV T = V (ΣTΣ)V T . Therefore Q1 = V and
D1 = ΣTΣ. The columns of V are eigenvectors of AT A, and the eigenvalues are
the diagonal entries of the n× n matrix ΣTΣ, which are σ2

1, . . . ,σ2
r , 0, . . . , 0.

c) AAT = UΣV T (UΣV T )T = UΣV T VΣT U T = U(ΣΣT )U T . Therefore Q2 = U and
D2 = ΣΣT . The columns of U are eigenvectors of AAT , and the eigenvalues are
the diagonal entries of the n× n matrix ΣΣT , which are σ2

1, . . . ,σ2
r , 0, . . . , 0.

d) V T vi = (v1·vi, . . . , vi·vi, . . . , vn·vi) = (0, . . . , 1, . . . , 0),ΣV T vi = Σ(0, . . . , 1, . . . , 0) =
(0, . . . ,σi, . . . , 0), Avi = UΣV T vi = U(0, . . . ,σi, . . . , 0) = σiUei = σiui.



3. Computing the vector SVD

a) A=
�

0 −1
3 0

�

. The matrix AT A=
�

9 0
0 1

�

has eigenvalues λ1 = 9,λ2 = 1, with

eigenvectors v1 = (1, 0) and v2 = (0,1). The singular values areσ1 =
p

λ1 = 3
and σ2 =

p

λ2 = 1. The left singular vectors are u1 =
1
3Av1 =

1
3(0,3) = (0,1)

and u2 =
Av2
1 = (−1,0). The vector SVD is

A= 3(0, 1)(1, 0)T + 1(−1,0)(0,1)T .

b) A=

 

2 0 0 0
0 0 0 1
0 −3 0 0

!

. The matrix AT A=







4 0 0 0
0 9 0 0
0 0 0 0
0 0 0 1






has eigenvalues λ1 =

9,λ2 = 4,λ3 = 1,λ4 = 0. The orthonormal eigenvectors for the non-zero
eigenvalues are v1 = (0,1, 0,0), v2 = (1,0, 0,0), and v3 = (0, 0,0,1). The
singular values are σ1 = 3,σ2 = 2,σ3 = 1. The left singular vectors are
u1 =

1
3Av1 = (0,0,−1), u2 =

1
2Av2 = (1,0, 0), u3 =

1
1Av3 = (0, 1,0). The vector

SVD is

A= 3(0, 0,−1)(0,1, 0,0)T + 2(1,0, 0)(1,0, 0,0)T + 1(0, 1,0)(0, 0,0, 1)T .

c) A =
�

2 1
0 2

�

. The matrix AT A =
�

4 2
2 5

�

has characteristic polynomial λ2 −

9λ+ 16, with eigenvalues λ1 =
9+
p

17
2 ,λ2 =

9−
p

17
2 . We then have eigenvectors

v1 =
(−2,4−λ1)
||(−2,4−λ1)||

≈ (−0.615,−0.788), and v2 =
(−2,4−λ2)
||(−2,4−λ2)||

≈ (−0.788,0.615).
The singular values are σ1 =

p

λ1 ≈ 2.562 and σ2 =
p

λ2 ≈ 1.562.
The left singular vectors are u1 =

Av1
σ1
≈ (−0.788,−0.615) and u2 =

Av2
σ2
≈

(−0.615,0.788).
The vector SVD is, approximately,

A= 2.562(−0.788,−0.615)(−0.615,−0.788)T+1.562(−0.615,0.788)(−0.788,0.615)T .

(The fact that the u and v vectors look so similar seems to be a coincidence.)



4. Computing the matrix SVD
Compute the matrix SVD of each of the following matrices:

a) A=
�

0 −1
3 0

�

. Since m = n = r = 2, we can just use the singular vectors and

values found in problem 3a) (no need to find ONB for Nul(A) or Nul(AT ).) We
have

A= UΣV T =
�

0 −1
1 0

��

3 0
0 1

��

1 0
0 1

�T

.

b) A =

 

2 0 0 0
0 0 0 1
0 −3 0 0

!

. We found the vector SVD of this in 3b). Since m =

3, n = 4, r = 3, we need to find the additional vector v4, an ONB of Nul(A).
Since the matrix AT A was rather simple, and Nul(AT A) = Nul(A), we can use
that AT A had unit eigenvector v4 = (0,0, 1,0) for the eigenvalue λ4 = 0. Then

A= UΣV T =

 

0 1 0
0 0 1
−1 0 0

! 

3 0 0 0
0 2 0 0
0 0 1 0

!







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0







T

.

c) A =

 

1 2
1 2
2 4

!

. The matrix AT A =
�

6 12
12 24

�

has characteristic polynomial

λ2−30λ, with eigenvaluesλ1 = 30 andλ2 = 0. Theλ1-eigenvector equals v1 =
(12,24)
||(12,24)|| =

(1,2)
||(1,2)|| =

1p
5
(1,2), while the λ2-eigenvector equals v2 =

(12,−6)
||(12,−6)|| =

1p
5
(2,−1).
The only singular value is σ1 =

p

λ1 =
p

30. We find the left singular vector
u1 =

1p
30

Av1 =
1

5
p

6
(5,5, 10) = 1p

6
(1, 1,2).

We already found the vector v2 spanning Nul(AT A) = Nul(A). It remains to
find an ONB u2, u3 of Nul(AT ). It is not hard to see that (1,−1,0) and (2, 0,−1)
are a basis of Nul(AT ), but they are not orthonormal.

Doing Gram-Schmidt, we first replace (1,−1, 0) with (1,−1,0) and replace
(2, 0,−1) with (2, 0,−1) − (2,0,−1)·(1,−1,0)

(1,−1,0)·(1,−1,0)(1,−1, 0) = (2, 0,−1) − (1,−1,0) =
(1, 1,−1).

(I avoided using the usual names for vectors in Gram-Schmidt, since it would
be easy to confuse with the u and v vectors of SVD, which have a totally dif-
ferent meaning).

Making these unit vectors, we find that u2 =
1p
2
(1,−1,0) and u3 =

1p
3
(1, 1,−1)

form an ONB of Nul(AT ).
We conclude that

U =





1/
p

6 1/
p

2 1/
p

3
1/
p

6 −1/
p

2 1/
p

3
2/
p

6 0 −1/
p

3



 , V =

�

1/
p

5 2/
p

5
2/
p

5 −1/
p

5

�

,Σ=





p
30 0
0 0
0 0



 .



Warning: Many other answers are possible for U and V . Your columns of V
might be off by a sign, your first column of U might be off by a sign, and the
final two columns of U can look quite different.



5. Sums of rank 1 matrices
This final problem is not about SVDs, but just about sums of rank one matrices.

a) Without computing A, we will explain why

A= (1,2, 1)(1,1)T + (1,−1, 1)(−1,1)T

is a rank 2 matrix.
Since A(1,1) = (1,2, 1)((1, 1)·(1,1))+(1,−1, 1)((−1, 1)·(1,1)) = 2(1,2, 1)+

0, the vector 2(1, 2,1) is in the column space of A. Similarly, A(−1, 1) =
(1, 2,1)((−1, 1)·(1, 1))+(1,−1,1)((−1, 1)·(−1,1)) = 0+2(1,−1, 1), so 2(1,−1, 1)
is also in the column space of A since these two column space vectors are lin-
early independent, the rank of A is at least 2. Since A is a 3×2 matrix, its rank
is at most 2. Therefore the rank of A equals 2.

b) If A= u1vT
1 + · · ·+ ur vT

r for some vectors ui ∈ Rm and v j ∈ Rn, we will explain
why the rank of A is at most r.

For any vector x , Ax = (v1 · x)u1 + · · ·+ (vr · x)ur . Therefore any vector b
for which Ax = b is consistent must be a linear combination of u1, . . . , ur . In
other words, Col(A) ⊂ Span{u1, . . . , ur}. Since dimSpan{u1, . . . , ur} ≤ r, and
dimCol(A) ≤ dim Span{u1, . . . , ur}, we conclude that rank(A) = dim Col(A) ≤
r.

c) Suppose that the vectors u1, . . . , ur ∈ Rm are a linearly independent set of vec-
tors, and the vectors v1, . . . , vr ∈ Rn are also linearly independent. We consider
the matrix A= u1vT

1 + · · ·+ ur vT
r .

Since the vi vectors are linearly independent, Span{v1, . . . , vr} is r-dimensional,
while Span{v2, . . . , vr} is (r − 1)-dimensional. Using Gram-Schmidt, we can
find a vector v ∈ Span{v1, . . . , vr} which is orthogonal to Span{v2, . . . , vr} but
not orthogonal to v1 (i.e. we can project v1 onto the orthogonal complement
of Span{v2, . . . , vr}).

Using this vector v, Av = (v1 · v)u1+ · · ·+(vr · v)ur = (v1 · v)u1, since v · v2 =
0, v ·v3 = 0, . . .. In other words, A

�

v
v1·v

�

= u1, which verifies that u1 is in Col(A).
A similar argument shows that each of the vectors ui is in Col(A). Therefore

Span{u1, . . . , ur} ⊂ Col(A). Since the ui vectors are linearly independent, r =
Span{u1, . . . , ur} ≤ dim Col(A) = rank(A). On the other hand, by b), rank(A)≤
r. Therefore rank(A) = r.


