
Math 218D Problem Session

Week 2

1. Solving Ax = b using PA= LU
Solve the matrix equation

 

1 1 1
2 2 3
1 2 3

! 

x1
x2
x3

!

=

 

1
3
2

!

,

using the PA= LU decomposition
 

1 0 0
0 0 1
0 1 0

! 

1 1 1
2 2 3
1 2 3

!

=

 

1 0 0
1 1 0
2 0 1

! 

1 1 1
0 1 2
0 0 1

!

.

a) Identify A, b, P, L, and U .

b) Compute P b. What does P do to b?

c) Convert Lc = P b into 3 linear equations, and solve for c = (c1, c2, c3) using
forward-substitution.

d) Convert U x = c into 3 linear equations, and solve for x using back-substitution.

e) Check your answer, by multiplying A · x and confirming that it equals b.

Why does this work? Starting with Ax = b, multiply both sides of the equation by
P to get PAx = P b. Since PA = LU , this is the same as LU x = P b,which can be
separated into two equations:

Lc = P b,

U x = c.

If you plug the second equation into the first you recover LU x = P b.



2. Finding A= LU and A−1 using elementary matrices
Consider the matrix

A=

 

1 −1 2
2 −1 4
1 4 6

!

.

a) Explain how to reduce A to a matrix U in REF (not RREF) using three row
replacements.

b) Let E1, E2, E3 be the elementary matrices for these row operations, in order.
Fill in the blank with a product involving the Ei:

U = A.

c) Fill in the blank with a product involving the E−1
i :

A= U

d) Evaluate that product to produce a lower-triangular matrix L with ones on the
diagonal such that A= LU .

e) Compute L and U again, this time using the two column method. Make sure
you get the same answer as before.

f) Explain how to reduce U to the 3×3 identity matrix using three more elemen-
tary matrices E4, E5, E6 (scaling, followed by row replacements).

g) Fill in the blank with a product involving the Ei:

A−1 = .

h) Compute A−1 by row reducing
�

A In

�

. This is exactly the same as evaluating
the product above!



3. Maximal Partial Pivoting
Consider the linear system

x2 = 1
x1 + x2 = 2.

Clearly the solution is x1 = 1 and x2 = 1. Let’s modify the system just a little bit:

10−17 x1 + x2 = 1
x1 + x2 = 2.

Presumably the solution (x1, x2) will be very close to (1, 1).
a) Perform Gauss–Jordan elimination on the augmented matrix

�

10−17 1 1
1 1 2

�

to solve the modified system. You should obtain

x1 =
1

1− 10−17
x2 = 2−

1
1− 10−17

,

which are indeed very close to 1.

Now let’s see if a computer can do the same. Load up linalg.js, which can be found
on the course homepage, and open a Javascript console in your browser (follow
the instructions on that page). Create the augmented matrix as follows:

A = mat([1e-17, 1, 1], [1, 1, 2])

In linalg.js, matrices are just arrays of arrays, so you can inspect their elements as
follows:

A[0][0] // 1e-17

Note that Javascript arrays are indexed from zero, the above command prints the
(1,1) entry.

b) Now let’s perform Gauss–Jordan elimination:

A.rowReplace(1,0,-1/A[0][0])
A.rowScale(1,1/A[1][1])
A.rowReplace(0,1,-A[0][1]/A[1][1])
A.rowScale(0,1/A[0][0])
The first command translates into R2 −= 1/10−17R1: the first argument to
rowReplace is the row to replace (indexed from zero), the second is the row
to add/subtract, and the third is the scaling factor.

c) Verify that the resulting matrix has the form
�

1 0 (?)
0 1 (?)

�

.

d) What does the computer think x1 and x2 are? What went wrong?

https://services.math.duke.edu/~jdr/linalg_js/doc/


e) Javascript uses IEE-754 64-bit floating point numbers. This means that they
have about 16 decimal digits of precision. Try evaluating 1+1e17 in your con-
sole. What did you get?

The problem was that you produced enormous numbers by dividing by the tiny
number 10−17. When you’re doing math on a computer, you never want to divide by
tiny numbers.

f) Now try performing Gauss–Jordan elimination again, after selecting the max-
imal pivot in the first column:

A = mat([1e-17, 1, 1], [1, 1, 2])
A.rowSwap(0,1)
Did that work? What does the computer think x1 and x2 are now?



4. PA= LU on a computer
The purpose of this problem is to convince you that computing a PA= LU decom-
position really is faster for solving Ax = b for many values of b. Load up linalg.js
in your browser, and open a Javascript console.

a) Let’s create a 1000× 1000 invertible matrix:

A = Matrix.identity(1000).add(Matrix.constant(1,1000))
The resulting matrix is















2 1 1 · · · 1 1
1 2 1 · · · 1 1
1 1 2 · · · 1 1
...

...
...

. . .
...

...
1 1 1 · · · 2 1
1 1 1 · · · 1 2















.

b) Let’s solve Ax = b using a PA= LU decomposition.

A.PLU() // Computes and caches a PA=LU decomposition
b = Vector.constant(1000,1)
for(i = 0; i < 1000; ++i) A.solve(b)
This solves Ax = (1, 1, . . . , 1) 1000 times, using the PA = LU decomposition.
On my computer, both steps take a few seconds.

c) Now let’s solve Ax = b without using PA= LU .

for(i = 0; i < 1000; ++i) { A.invalidate(); A.solve(b); }
When you run A.solve(b), the library actually computes and caches the PA=
LU decomposition, since that’s no more difficult than running Gauss–Jordan
elimination anyway. The command A.invalidate() clears that cache to
force the library to run elimination 1000 times.

The above command crashed my browser tab.

https://services.math.duke.edu/~jdr/linalg_js/doc/

