Math 218D Problem Session
Week 2

1. Solving Ax = b using PA= LU

Solve the matrix equation

11 1\ /x 1
2 2 3|[x,|=|3],
1 2 3)\x, 2

using the PA = LU decomposition

1 0O 1 11 1 0O 1 11
0 01 2 2 3|=11120 o1 2].
010 1 2 3 2 01 0 01

a) Identify A, b, P, L, and U.

b) Compute Pb. What does P do to b?

¢) Convert Lc = Pb into 3 linear equations, and solve for ¢ = (c;, ¢y, ¢3) using
forward-substitution.

d) Convert Ux = c into 3 linear equations, and solve for x using back-substitution.

e) Check your answer, by multiplying A- x and confirming that it equals b.

Why does this work? Starting with Ax = b, multiply both sides of the equation by
P to get PAx = Pb. Since PA = LU, this is the same as LUx = Pb,which can be
separated into two equations:

Lc=Pb,
Ux=c.

If you plug the second equation into the first you recover LUx = Pb.

2. Finding A= LU and A™! using elementary matrices

Consider the matrix
1 —1 2
A= 2 -1 4.
1 4 6

a) Explain how to reduce A to a matrix U in REF (not RREF) using three row
replacements.

b) Let E,, E,, E; be the elementary matrices for these row operations, in order.
Fill in the blank with a product involving the E;:

U= A.
¢) Fill in the blank with a product involving the E; '
A= U

d) Evaluate that product to produce a lower-triangular matrix L with ones on the
diagonal such that A= LU.

e) Compute L and U again, this time using the two column method. Make sure
you get the same answer as before.

f) Explain how to reduce U to the 3 x 3 identity matrix using three more elemen-
tary matrices E,, Es, Eq (scaling, followed by row replacements).

g) Fill in the blank with a product involving the E;:
Al=

h) Compute A~! by row reducing (A | I,) This is exactly the same as evaluating
the product above!

Maximal Partial Pivoting
Consider the linear system
xZ = 1
X+ x, = 2.
Clearly the solution is x; = 1 and x, = 1. Let’s modify the system just a little bit:
].0_17X1 + xZ =1
X, +x, = 2.
Presumably the solution (x;, x,) will be very close to (1, 1).
a) Perform Gauss—Jordan elimination on the augmented matrix

1077 1|1
1 1|2
to solve the modified system. You should obtain

B 1 s 1
T 1—-10"7 2 1—10-17’

which are indeed very close to 1.

X1

Now let’s see if a computer can do the same. Load up linalg.js, which can be found
on the course homepage, and open a Javascript console in your browser (follow
the instructions on that page). Create the augmented matrix as follows:

A = mat([le-17, 1, 11, [1, 1, 2])

In linalg.js, matrices are just arrays of arrays, so you can inspect their elements as
follows:

A[o] [0] // 1le-17

Note that Javascript arrays are indexed from zero, the above command prints the
(1,1) entry.
b) Now let’s perform Gauss—Jordan elimination:
A.rowReplace(1,0,-1/A[0][0])
A.rowScale(1,1/A[1]1[1]1)
A.rowReplace(0,1,-A[0][1]1/A[11[1])
A.rowScale(0,1/A[0] [0])

The first command translates into R, —= 1/107'7R;: the first argument to
rowReplace is the row to replace (indexed from zero), the second is the row
to add/subtract, and the third is the scaling factor.

c¢) Verify that the resulting matrix has the form

(o 9]t)

d) What does the computer think x; and x, are? What went wrong?

https://services.math.duke.edu/~jdr/linalg_js/doc/

e) Javascript uses IEE-754 64-bit floating point numbers. This means that they
have about 16 decimal digits of precision. Try evaluating 1+1e17 in your con-
sole. What did you get?

The problem was that you produced enormous numbers by dividing by the tiny
number 1077, When you're doing math on a computer, you never want to divide by
tiny numbers.
f) Now try performing Gauss—Jordan elimination again, after selecting the max-
imal pivot in the first column:
A = mat([le-17, 1, 1], [1, 1, 2])
A.rowSwap(0,1)

Did that work? What does the computer think x; and x, are now?

PA = LU on a computer

The purpose of this problem is to convince you that computing a PA= LU decom-
position really is faster for solving Ax = b for many values of b. Load up linalg.js
in your browser, and open a Javascript console.

a) Let’s create a 1000 x 1000 invertible matrix:

b)

c)

A = Matrix.identity(1000).add(Matrix.constant(1,1000))
The resulting matrix is

[
= N
I NG
[
[T

111 -+ 21
111 -+ 1 2
Let’s solve Ax = b using a PA= LU decomposition.

A.PLU(Q) // Computes and caches a PA=LU decomposition
b = Vector.constant(1000,1)
for(i = 0; i < 1000; ++i) A.solve(b)

This solves Ax = (1,1,...,1) 1000 times, using the PA = LU decomposition.
On my computer, both steps take a few seconds.

Now let’s solve Ax = b without using PA=LU.

for(i = 0; i < 1000; ++i) { A.invalidate(); A.solve(b); }

When yourun A.solve(b), the library actually computes and caches the PA =
LU decomposition, since that’s no more difficult than running Gauss—-Jordan
elimination anyway. The command A.invalidate() clears that cache to
force the library to run elimination 1000 times.

The above command crashed my browser tab.

https://services.math.duke.edu/~jdr/linalg_js/doc/

