Math 218D Problem Session
Week 3

1. Making some examples
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d) A= 2 O |has1pivot. A= 2 O | has 2 pivots.

30 3 0

1 1 1
e) A= (2 0 ) b= (O) would work, as would any vector b such that
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g) There is no 2 x 3 matrix with full column rank. Any 2 x 3 matrix with full row

rank (2 pivots) is always consistent, so we can’t find one such that Ax = G)

is inconsistent.



2. Parametric forms
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b) The parametric form of the solution is:
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Setting x; = 0 gives one solution: (x;,x,,x3) =(1/3,—1/3,0). Setting x; =1
gives another solution (x;, x,, x5 = (0,—1, 1).

¢) The parametric vector form is:
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d) The line passes through the point (1/3,—1/3,0), and goes in the direction of
the vector (—1/3,—2/3,1).

e) This system of equations has no solutions.

f) The parametric vector form of this system is
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The solution to the homogeneous equation is a line, parallel to the line from
part d), passing through the origin.
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g) Avector b = (bz) makes Ax = b consistent precisely when —b; + b,— b5 = 0.
bs

h) The span of these vectors is the same as the set of vectors making Ax = b
consistent. By g), this is the same as the vectors which satisfying a single linear
equation. The set of vectors satisfying a single linear equation is a plane.



3. The geometry of spans
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a) No, itis not possible. You can confirm this by computing the RREF of ( -1 —-1|1 )
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Alternately, you could observe that that the first two components of (—1) and
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(—1) add up to 0, while the first two components of (1) do not.
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b) Itis all of R®, since | 1 | is not contained in the plane Span{ [ —1 |, | —1
0 5 1
(using 3a)).
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¢) By computing the REF of | —1 —1| b, |, we confirm that the vectors b =
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(bq, by, b3) which make
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consistent are precisely those where b; + b, = 0. This means that the plane

parametrized by
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x+y=0.

has equation

d) Yes, you can find scalars x;, x, so that

(3] =3)-(3)

since (4,—4,0) solves the equation x + y = 0 found in 3c).
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e) The vectors (—1) and (—1) are not parallel, so they span a plane. The third
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vector (—4) is contained in that plane by 3d), so adding it to the list of vectors
0

does not enlarge the span.



